找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Cones; Geometry and Probabi Rolf Schneider Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spr

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 11:37:25 | 只看該作者
https://doi.org/10.33283/978-3-86298-640-8Whereas the considerations of the first chapter were essentially combinatorial in character, we begin now with measuring convex polytopes and polyhedral cones. In Section 2.1 we deal briefly with invariant measures, as needed later.
12#
發(fā)表于 2025-3-23 17:38:15 | 只看該作者
13#
發(fā)表于 2025-3-23 21:20:54 | 只看該作者
14#
發(fā)表于 2025-3-23 23:25:12 | 只看該作者
15#
發(fā)表于 2025-3-24 03:32:45 | 只看該作者
Angle functions,Whereas the considerations of the first chapter were essentially combinatorial in character, we begin now with measuring convex polytopes and polyhedral cones. In Section 2.1 we deal briefly with invariant measures, as needed later.
16#
發(fā)表于 2025-3-24 07:48:13 | 只看該作者
Relations to spherical geometry,Whereas the considerations of the first chapter were essentially combinatorial in character, we begin now with measuring convex polytopes and polyhedral cones. In Section 2.1 we deal briefly with invariant measures, as needed later.
17#
發(fā)表于 2025-3-24 14:01:51 | 只看該作者
Central hyperplane arrangements and induced cones,The subsequent sections of this chapter deal with random cones generated by random central hyperplane arrangements. This topic was initiated a long time ago by Cover and Efron [50]. Their work is expanded considerably in Sections 5.3–5.5.
18#
發(fā)表于 2025-3-24 15:28:21 | 只看該作者
Convex hypersurfaces adapted to cones,In this chapter, the viewpoint is distinctly different. We still start with a pointed closed convex cone . with interior points. But our main interest will be in convex hypersurfaces, namely boundaries of closed convex sets, in this cone, whose behavior at infinity is determined by the cone.
19#
發(fā)表于 2025-3-24 19:58:16 | 只看該作者
Appendix: Open questions,We have occasionally mentioned open questions, and in this Appendix we want to repeat them and present them as a brief collection, for the reader’s convenience.
20#
發(fā)表于 2025-3-25 02:48:49 | 只看該作者
https://doi.org/10.1007/978-3-031-15127-9valuation; conic support measure; Grassmann angle; Master Steiner formula; central hyperplane tessellati
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 00:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大关县| 类乌齐县| 那曲县| 龙州县| 大港区| 普定县| 武冈市| 建宁县| 平阳县| 衡东县| 玛纳斯县| 巴彦淖尔市| 股票| 舞钢市| 长阳| 都昌县| 淄博市| 来凤县| 大渡口区| 东阿县| 台北县| 玉门市| 延津县| 若羌县| 茌平县| 贡觉县| 康保县| 钟山县| 香港 | 逊克县| 冀州市| 沈丘县| 罗山县| 宜川县| 湾仔区| 天峨县| 陆丰市| 巴东县| 平定县| 三门县| 侯马市|