找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Cones; Geometry and Probabi Rolf Schneider Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spr

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 11:37:25 | 只看該作者
https://doi.org/10.33283/978-3-86298-640-8Whereas the considerations of the first chapter were essentially combinatorial in character, we begin now with measuring convex polytopes and polyhedral cones. In Section 2.1 we deal briefly with invariant measures, as needed later.
12#
發(fā)表于 2025-3-23 17:38:15 | 只看該作者
13#
發(fā)表于 2025-3-23 21:20:54 | 只看該作者
14#
發(fā)表于 2025-3-23 23:25:12 | 只看該作者
15#
發(fā)表于 2025-3-24 03:32:45 | 只看該作者
Angle functions,Whereas the considerations of the first chapter were essentially combinatorial in character, we begin now with measuring convex polytopes and polyhedral cones. In Section 2.1 we deal briefly with invariant measures, as needed later.
16#
發(fā)表于 2025-3-24 07:48:13 | 只看該作者
Relations to spherical geometry,Whereas the considerations of the first chapter were essentially combinatorial in character, we begin now with measuring convex polytopes and polyhedral cones. In Section 2.1 we deal briefly with invariant measures, as needed later.
17#
發(fā)表于 2025-3-24 14:01:51 | 只看該作者
Central hyperplane arrangements and induced cones,The subsequent sections of this chapter deal with random cones generated by random central hyperplane arrangements. This topic was initiated a long time ago by Cover and Efron [50]. Their work is expanded considerably in Sections 5.3–5.5.
18#
發(fā)表于 2025-3-24 15:28:21 | 只看該作者
Convex hypersurfaces adapted to cones,In this chapter, the viewpoint is distinctly different. We still start with a pointed closed convex cone . with interior points. But our main interest will be in convex hypersurfaces, namely boundaries of closed convex sets, in this cone, whose behavior at infinity is determined by the cone.
19#
發(fā)表于 2025-3-24 19:58:16 | 只看該作者
Appendix: Open questions,We have occasionally mentioned open questions, and in this Appendix we want to repeat them and present them as a brief collection, for the reader’s convenience.
20#
發(fā)表于 2025-3-25 02:48:49 | 只看該作者
https://doi.org/10.1007/978-3-031-15127-9valuation; conic support measure; Grassmann angle; Master Steiner formula; central hyperplane tessellati
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 00:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
布尔津县| 广西| 哈巴河县| 梁山县| 陆丰市| 黄陵县| 福鼎市| 沾化县| 凉城县| 榆林市| 威海市| 什邡市| 定远县| 东城区| 庆云县| 昌都县| 山东省| 宜兰市| 庆云县| 靖西县| 涞水县| 鄂州市| 河津市| 云梦县| 元阳县| 阳原县| 分宜县| 伊金霍洛旗| 康定县| 商南县| 鹿泉市| 克什克腾旗| 兴隆县| 平顶山市| 永济市| 九江市| 黎平县| 郓城县| 化隆| 沙田区| 榆林市|