找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Heinz H. Bauschke,Patrick L. Combettes Book 2017Latest edition Springer In

[復(fù)制鏈接]
樓主: ODE
21#
發(fā)表于 2025-3-25 04:01:41 | 只看該作者
22#
發(fā)表于 2025-3-25 08:11:21 | 只看該作者
23#
發(fā)表于 2025-3-25 12:19:53 | 只看該作者
24#
發(fā)表于 2025-3-25 18:44:10 | 只看該作者
,Fenchel–Rockafellar Duality,Of central importance in convex analysis are conditions guaranteeing that the conjugate of a sum is the infimal convolution of the conjugates. The main result in this direction is a theorem due to Attouch and Brézis. In turn, it gives rise to the Fenchel–Rockafellar duality framework for convex optimization problems.
25#
發(fā)表于 2025-3-25 21:58:06 | 只看該作者
26#
發(fā)表于 2025-3-26 02:59:04 | 只看該作者
Convex Analysis and Monotone Operator Theory in Hilbert Spaces978-3-319-48311-5Series ISSN 1613-5237 Series E-ISSN 2197-4152
27#
發(fā)表于 2025-3-26 05:23:58 | 只看該作者
https://doi.org/10.1057/9781137508416asserts that every nonempty closed convex subset . of . is a Chebyshev set, i.e., that every point in . possesses a unique best approximation from ., and which provides a characterization of this best approximation.
28#
發(fā)表于 2025-3-26 08:47:31 | 只看該作者
https://doi.org/10.1057/9781137508416lems in nonlinear analysis reduce to finding fixed points of nonexpansive operators. In this chapter, we discuss nonexpansiveness and several variants. The properties of the fixed point sets of nonexpansive operators are investigated, in particular in terms of convexity.
29#
發(fā)表于 2025-3-26 15:50:18 | 只看該作者
https://doi.org/10.1057/9781137508416quences possess attractive properties that simplify the analysis of their asymptotic behavior. In this chapter, we provide the basic theory for Fejér monotone sequences and apply it to obtain in a systematic fashion convergence results for various classical iterations involving (quasi)nonexpansive operators.
30#
發(fā)表于 2025-3-26 19:23:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 00:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀化市| 泉州市| 万安县| 陕西省| 桃源县| 江华| 潞城市| 图木舒克市| 绵阳市| 武平县| 信阳市| 略阳县| 邻水| 西畴县| 常熟市| 修武县| 北安市| 辽阳县| 启东市| 德保县| 池州市| 三门峡市| 青州市| 临桂县| 侯马市| 拜城县| 三门峡市| 泽普县| 年辖:市辖区| 朔州市| 南昌市| 巩义市| 临泽县| 磐石市| 依兰县| 扎赉特旗| 岳池县| 庆元县| 汉沽区| 上林县| 垫江县|