找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Analysis and Global Optimization; Hoang Tuy Book 2016Latest edition Springer International Publishing AG 2016 D.C. functions.convex

[復(fù)制鏈接]
樓主: corrode
51#
發(fā)表于 2025-3-30 10:43:21 | 只看該作者
52#
發(fā)表于 2025-3-30 16:08:43 | 只看該作者
General Methods by relaxation or restriction. This chapter presents two most popular general methods: branch and bound (BB) and outer approximation (OA). Section?6.1 discusses the theoretical foundations of three basic types of partitioning processes: simplicial, conical, and rectangular, with a focus on the basic
53#
發(fā)表于 2025-3-30 17:43:44 | 只看該作者
DC Optimization Problems, concave minimization under convex constraints (Sect. 7.2), reverse convex programming (Sect. 7.3), general canonical dc optimization problem (Sect. 7.4), general robust approach to dc optimization (Sect. 7.5), and also applications of dc optimization in various fields (Sects. 7.6–7.8) such as desi
54#
發(fā)表于 2025-3-31 00:18:11 | 只看該作者
Special Methodspecial methods adapted to special problems of dc optimization and extensions: polyhedral annexation for concave minimization and reverse convex programming, decomposition method for convex problems depending upon a multivariate parameter, including decomposition of partly convex problems by reducing
55#
發(fā)表于 2025-3-31 02:32:07 | 只看該作者
56#
發(fā)表于 2025-3-31 08:45:15 | 只看該作者
Nonconvex Quadratic Programmingree of nonconvexity. One of the earliest significant results in this area is the celebrated S-Lemma of Yakubovich which plays a major role in the development of quadratic optimization. In this chapter, a study of nonconvex quadratic programming is provided that starts with a generalized S-Lemma esta
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贡觉县| 绥阳县| 龙游县| 堆龙德庆县| 嘉鱼县| 都匀市| 横山县| 灵璧县| 马公市| 秦安县| 长沙县| 灵璧县| 高青县| 恩施市| 曲松县| 沈丘县| 岗巴县| 琼结县| 青龙| 卢龙县| 临汾市| 灵川县| 太仆寺旗| 于田县| 高要市| 民丰县| 额尔古纳市| 宜兰县| 淮安市| 增城市| 吉木萨尔县| 广河县| 邢台市| 龙口市| 福清市| 遂平县| 乐至县| 新晃| 望谟县| 黑山县| 东山县|