找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Analysis and Global Optimization; Hoang Tuy Book 19981st edition Springer Science+Business Media Dordrecht 1998 Approximation.Mathe

[復制鏈接]
樓主: 郊區(qū)
21#
發(fā)表于 2025-3-25 03:26:32 | 只看該作者
22#
發(fā)表于 2025-3-25 10:28:55 | 只看該作者
23#
發(fā)表于 2025-3-25 14:53:40 | 只看該作者
24#
發(fā)表于 2025-3-25 16:00:35 | 只看該作者
25#
發(fā)表于 2025-3-25 21:35:58 | 只看該作者
https://doi.org/10.1057/9781137393296nvex problems. The second aspect is the degree of nonconvexity, i.e. the extent to which the variables are nonconvex. This last Chapter is devoted to nonconvex optimization problems which involve only linear or quadratic functions, i.e. in a sense functions with lowest degree of nonconvexity.
26#
發(fā)表于 2025-3-26 02:00:30 | 只看該作者
27#
發(fā)表于 2025-3-26 07:42:29 | 只看該作者
1571-568X plays an essential role in the development of globaloptimization methods. This book develops a coherent and rigoroustheory of deterministic global optimization from this point of view.Part I constitutes an introduction to convex analysis, with anemphasis on concepts, properties and results particul
28#
發(fā)表于 2025-3-26 09:28:50 | 只看該作者
Value-Based Working Capital Managementroblems, this approach is sometimes also called a .. It should be noted, however, that in an outer approximation procedure cuts are always conjunctive, i.e. the polyhedron resulting from the cuts is always the intersection of all the cuts performed.
29#
發(fā)表于 2025-3-26 12:41:31 | 只看該作者
Outer and Inner Approximationroblems, this approach is sometimes also called a .. It should be noted, however, that in an outer approximation procedure cuts are always conjunctive, i.e. the polyhedron resulting from the cuts is always the intersection of all the cuts performed.
30#
發(fā)表于 2025-3-26 18:04:11 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 09:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
云梦县| 遂平县| 临邑县| 雅江县| 潼关县| 安多县| 元朗区| 巴林右旗| 德昌县| 西丰县| 屏东市| 措美县| 温泉县| 思南县| 离岛区| 崇义县| 米林县| 鄂州市| 汶上县| 左云县| 萨嘎县| 巫溪县| 黎川县| 玛纳斯县| 仲巴县| 高清| 岳阳市| 翼城县| 柳江县| 东乌珠穆沁旗| 河源市| 洪泽县| 乐亭县| 崇义县| 合阳县| 师宗县| 绍兴县| 南部县| 阜新市| 泸溪县| 酒泉市|