找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Analysis and Global Optimization; Hoang Tuy Book 19981st edition Springer Science+Business Media Dordrecht 1998 Approximation.Mathe

[復制鏈接]
樓主: 郊區(qū)
21#
發(fā)表于 2025-3-25 03:26:32 | 只看該作者
22#
發(fā)表于 2025-3-25 10:28:55 | 只看該作者
23#
發(fā)表于 2025-3-25 14:53:40 | 只看該作者
24#
發(fā)表于 2025-3-25 16:00:35 | 只看該作者
25#
發(fā)表于 2025-3-25 21:35:58 | 只看該作者
https://doi.org/10.1057/9781137393296nvex problems. The second aspect is the degree of nonconvexity, i.e. the extent to which the variables are nonconvex. This last Chapter is devoted to nonconvex optimization problems which involve only linear or quadratic functions, i.e. in a sense functions with lowest degree of nonconvexity.
26#
發(fā)表于 2025-3-26 02:00:30 | 只看該作者
27#
發(fā)表于 2025-3-26 07:42:29 | 只看該作者
1571-568X plays an essential role in the development of globaloptimization methods. This book develops a coherent and rigoroustheory of deterministic global optimization from this point of view.Part I constitutes an introduction to convex analysis, with anemphasis on concepts, properties and results particul
28#
發(fā)表于 2025-3-26 09:28:50 | 只看該作者
Value-Based Working Capital Managementroblems, this approach is sometimes also called a .. It should be noted, however, that in an outer approximation procedure cuts are always conjunctive, i.e. the polyhedron resulting from the cuts is always the intersection of all the cuts performed.
29#
發(fā)表于 2025-3-26 12:41:31 | 只看該作者
Outer and Inner Approximationroblems, this approach is sometimes also called a .. It should be noted, however, that in an outer approximation procedure cuts are always conjunctive, i.e. the polyhedron resulting from the cuts is always the intersection of all the cuts performed.
30#
發(fā)表于 2025-3-26 18:04:11 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 09:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
金川县| 大港区| 榆林市| 丹凤县| 乌海市| 晋城| 鄢陵县| 杭州市| 聂拉木县| 四平市| 明溪县| 厦门市| 鹤壁市| 新营市| 临沭县| 东城区| 噶尔县| 蕉岭县| 徐水县| 长寿区| 文水县| 额敏县| 茂名市| 海南省| 当涂县| 楚雄市| 四川省| 监利县| 兴安县| 兴义市| 札达县| 东明县| 呼和浩特市| 宁南县| 宝鸡市| 武冈市| 广灵县| 洪湖市| 陆河县| 西昌市| 东丽区|