找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Analysis and Global Optimization; Hoang Tuy Book 19981st edition Springer Science+Business Media Dordrecht 1998 Approximation.Mathe

[復(fù)制鏈接]
查看: 20453|回復(fù): 44
樓主
發(fā)表于 2025-3-21 18:34:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Convex Analysis and Global Optimization
編輯Hoang Tuy
視頻videohttp://file.papertrans.cn/238/237821/237821.mp4
叢書名稱Nonconvex Optimization and Its Applications
圖書封面Titlebook: Convex Analysis and Global Optimization;  Hoang Tuy Book 19981st edition Springer Science+Business Media Dordrecht 1998 Approximation.Mathe
描述Due to the general complementary convex structure underlyingmost nonconvex optimization problems encountered in applications,convex analysis plays an essential role in the development of globaloptimization methods. This book develops a coherent and rigoroustheory of deterministic global optimization from this point of view.Part I constitutes an introduction to convex analysis, with anemphasis on concepts, properties and results particularly needed forglobal optimization, including those pertaining to the complementaryconvex structure. Part II presents the foundation and application ofglobal search principles such as partitioning and cutting, outer andinner approximation, and decomposition to general global optimizationproblems and to problems with a low-rank nonconvex structure as wellas quadratic problems. Much new material is offered, aside from arigorous mathematical development. ..Audience:. The book is written as a text for graduate students inengineering, mathematics, operations research, computer science andother disciplines dealing with optimization theory. It is alsoaddressed to all scientists in various fields who are interested inmathematical optimization.
出版日期Book 19981st edition
關(guān)鍵詞Approximation; Mathematica; Partition; calculus; computer; computer science; global optimization; operation
版次1
doihttps://doi.org/10.1007/978-1-4757-2809-5
isbn_softcover978-1-4419-4783-3
isbn_ebook978-1-4757-2809-5Series ISSN 1571-568X
issn_series 1571-568X
copyrightSpringer Science+Business Media Dordrecht 1998
The information of publication is updating

書目名稱Convex Analysis and Global Optimization影響因子(影響力)




書目名稱Convex Analysis and Global Optimization影響因子(影響力)學(xué)科排名




書目名稱Convex Analysis and Global Optimization網(wǎng)絡(luò)公開度




書目名稱Convex Analysis and Global Optimization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Convex Analysis and Global Optimization被引頻次




書目名稱Convex Analysis and Global Optimization被引頻次學(xué)科排名




書目名稱Convex Analysis and Global Optimization年度引用




書目名稱Convex Analysis and Global Optimization年度引用學(xué)科排名




書目名稱Convex Analysis and Global Optimization讀者反饋




書目名稱Convex Analysis and Global Optimization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:48:13 | 只看該作者
Outer and Inner Approximation in such a way that the sequence of solutions of these relaxed problems converges to a solution of the given problem. This approach, first introduced in convex programming in the late fifties (Cheney and Goldstein (1959), Kelley (1960)) was later extended, under the name of ., to concave minimizatio
板凳
發(fā)表于 2025-3-22 04:22:30 | 只看該作者
Decompositioniables. However not all the variables play an equal part in the “curse of dimensionality”. Variables which enter the problem in a convex way, i.e. such that the problem becomes convex when all the other variables are fixed, are often relatively “easy”. The main source of difficulty comes from the “n
地板
發(fā)表于 2025-3-22 05:33:51 | 只看該作者
5#
發(fā)表于 2025-3-22 12:10:00 | 只看該作者
6#
發(fā)表于 2025-3-22 13:46:18 | 只看該作者
7#
發(fā)表于 2025-3-22 17:06:46 | 只看該作者
Violence and Visibility in Modern HistoryConvexity is a nice property of functions which, unfortunately, is not preserved even under such simple algebraic operations as scalar mutiplication or lower envelope. In this chapter we introduce the . (also called the .) which is the common underlying mathematical structure of virtually all nonconvex optimization problems.
8#
發(fā)表于 2025-3-23 01:09:58 | 只看該作者
Violence and Visibility in Modern HistoryWe will be concerned with optimization problems of the general form.where . is a closed convex set in .., .: Ω→ . and ..: Ω→., . 1,…,. are functions defined on some set Ω in .. containing .. Denoting the . by .:.we can also write the problem as
9#
發(fā)表于 2025-3-23 05:04:08 | 只看該作者
Convex SetsLet . be two points of ... The set of all . ∈.. of the form.is called the .. A subset . of .. is called an . (or .) if it contains every line through any two points of it, i.e. if (1 — λ). + λ. ∈ . for every . ∈ ., . ∈. and every λ ∈ .. An affine set which contains the origin is a subspace.
10#
發(fā)表于 2025-3-23 06:07:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 07:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河曲县| 开原市| 德昌县| 石泉县| 罗源县| 利辛县| 瑞丽市| 金昌市| 波密县| 贵南县| 建宁县| 滦南县| 外汇| 财经| 潍坊市| 沿河| 蕲春县| 桂东县| 浦东新区| 建昌县| 永川市| 安阳市| 时尚| 郸城县| 土默特左旗| 阆中市| 都昌县| 施甸县| 万载县| 安龙县| 灯塔市| 辰溪县| 乌恰县| 大名县| 双江| 高碑店市| 曲沃县| 荃湾区| 民乐县| 会泽县| 义马市|