找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convergence Structures and Applications to Functional Analysis; R. Beattie,H.-P. Butzmann Book 2002 Springer Science+Business Media Dordre

[復(fù)制鏈接]
查看: 13636|回復(fù): 41
樓主
發(fā)表于 2025-3-21 18:19:21 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Convergence Structures and Applications to Functional Analysis
編輯R. Beattie,H.-P. Butzmann
視頻videohttp://file.papertrans.cn/238/237736/237736.mp4
圖書封面Titlebook: Convergence Structures and Applications to Functional Analysis;  R. Beattie,H.-P. Butzmann Book 2002 Springer Science+Business Media Dordre
出版日期Book 2002
關(guān)鍵詞Vector space; function space; functional analysis; topological group; topology
版次1
doihttps://doi.org/10.1007/978-94-015-9942-9
isbn_softcover978-90-481-5994-9
isbn_ebook978-94-015-9942-9
copyrightSpringer Science+Business Media Dordrecht 2002
The information of publication is updating

書目名稱Convergence Structures and Applications to Functional Analysis影響因子(影響力)




書目名稱Convergence Structures and Applications to Functional Analysis影響因子(影響力)學(xué)科排名




書目名稱Convergence Structures and Applications to Functional Analysis網(wǎng)絡(luò)公開度




書目名稱Convergence Structures and Applications to Functional Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Convergence Structures and Applications to Functional Analysis被引頻次




書目名稱Convergence Structures and Applications to Functional Analysis被引頻次學(xué)科排名




書目名稱Convergence Structures and Applications to Functional Analysis年度引用




書目名稱Convergence Structures and Applications to Functional Analysis年度引用學(xué)科排名




書目名稱Convergence Structures and Applications to Functional Analysis讀者反饋




書目名稱Convergence Structures and Applications to Functional Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:25:29 | 只看該作者
Uniform convergence spaces,e convergence generalization of uniform spaces, are not as strong as their topological counterparts. In particular uniform continuity is not a very strong property. But basically all properties of completeness can be carried over to uniform convergence spaces and equicontinuity is an even stronger c
板凳
發(fā)表于 2025-3-22 01:14:49 | 只看該作者
地板
發(fā)表于 2025-3-22 05:49:53 | 只看該作者
Hahn-Banach extension theorems,or subspace of . with the property that . ∩.. is closed in each .. - such a subspace is called stepwise closed. Further, let φ bea sequentially continuous linear functional on .. Does there exist a (sequentially) continuous linear extension to .? This is a difficult and much researched problem. Subs
5#
發(fā)表于 2025-3-22 12:29:36 | 只看該作者
6#
發(fā)表于 2025-3-22 14:20:32 | 只看該作者
The Banach-Steinhaus theorem,are locally convex topological vector spaces and . is barrelled, then every pointwise bounded subset of ?. is equicontinuous. This powerful theorem is used, for example to show that the pointwise limit of a sequence of continuous linear mappings is a continuous linear mapping. It is used as well to
7#
發(fā)表于 2025-3-22 19:09:47 | 只看該作者
Duality theory for convergence groups,ter group, i.e., the character group of its character group. Here each character group carries the compact-open topology. There are various generalizations of this result to not necessarily locally compact, commutative topological groups. Probably the first one was due to S. Kaplan who generalized t
8#
發(fā)表于 2025-3-23 00:48:56 | 只看該作者
9#
發(fā)表于 2025-3-23 02:52:53 | 只看該作者
10#
發(fā)表于 2025-3-23 06:47:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
改则县| 白银市| 珲春市| 象州县| 林州市| 新绛县| 拉萨市| 青铜峡市| 清丰县| 习水县| 开远市| 健康| 吉木萨尔县| 新密市| 武夷山市| 安阳市| 平遥县| 大足县| 上犹县| 乐亭县| 望谟县| 大余县| 眉山市| 邢台县| 手游| 华蓥市| 昭苏县| 汶上县| 涞源县| 郴州市| 叶城县| 铅山县| 吉首市| 安塞县| 德惠市| 寿光市| 桐庐县| 岳阳县| 新巴尔虎左旗| 神农架林区| 乐山市|