找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convergence Estimates in Approximation Theory; Vijay Gupta,Ravi P. Agarwal Book 2014 Springer International Publishing Switzerland 2014 Be

[復(fù)制鏈接]
樓主: FAULT
11#
發(fā)表于 2025-3-23 10:00:56 | 只看該作者
12#
發(fā)表于 2025-3-23 14:01:26 | 只看該作者
Vijay Gupta,Ravi P. AgarwalCovers general approximation methods on linear positive operators.Provides key results on study of convergence, its direct results, rate of convergence, and asymptotic behavior.Presents convergence in
13#
發(fā)表于 2025-3-23 21:31:00 | 只看該作者
http://image.papertrans.cn/c/image/237734.jpg
14#
發(fā)表于 2025-3-24 00:32:34 | 只看該作者
https://doi.org/10.1007/978-3-319-02765-4Bezier variant; approximation; bounded variation; convergence; linear combinations; linear positive opera
15#
發(fā)表于 2025-3-24 03:10:00 | 只看該作者
16#
發(fā)表于 2025-3-24 07:28:43 | 只看該作者
Some More Results on the Rate of Convergence,perators as special cases. They investigated their results for the classes of functions . [., .] and . [., .]. Also, Hua and Shaw [156] extended this problem for linear integral operators with a not necessarily positive kernel.
17#
發(fā)表于 2025-3-24 11:06:48 | 只看該作者
18#
發(fā)表于 2025-3-24 14:53:46 | 只看該作者
19#
發(fā)表于 2025-3-24 22:16:27 | 只看該作者
Vision-and-Language Pretraining for VQAperators as special cases. They investigated their results for the classes of functions . [., .] and . [., .]. Also, Hua and Shaw [156] extended this problem for linear integral operators with a not necessarily positive kernel.
20#
發(fā)表于 2025-3-25 01:46:45 | 只看該作者
https://doi.org/10.1007/978-981-19-2228-2ls. In more recent papers, some approximation properties of the Stancu-type generalization on different operators were discussed (see, e.g., [50, 133, 187, 238]). Future studies could address defining the Stancu-type generalization of other operators and the convergence behavior, asymptotic formulas
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
惠东县| 石城县| 布拖县| 连城县| 拉孜县| 宿松县| 湟中县| 策勒县| 靖江市| 江山市| 句容市| 黄大仙区| 安达市| 营口市| 衢州市| 东乡| 牟定县| 高密市| 巴彦淖尔市| 天津市| 弥渡县| 余江县| 贵德县| 九江市| 措美县| 宝山区| 苍溪县| 准格尔旗| 襄樊市| 赤水市| 濮阳县| 曲周县| 沈丘县| 库伦旗| 当阳市| 洪江市| 荆州市| 凤凰县| 襄城县| 滁州市| 枣庄市|