找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convergence Estimates in Approximation Theory; Vijay Gupta,Ravi P. Agarwal Book 2014 Springer International Publishing Switzerland 2014 Be

[復(fù)制鏈接]
樓主: FAULT
11#
發(fā)表于 2025-3-23 10:00:56 | 只看該作者
12#
發(fā)表于 2025-3-23 14:01:26 | 只看該作者
Vijay Gupta,Ravi P. AgarwalCovers general approximation methods on linear positive operators.Provides key results on study of convergence, its direct results, rate of convergence, and asymptotic behavior.Presents convergence in
13#
發(fā)表于 2025-3-23 21:31:00 | 只看該作者
http://image.papertrans.cn/c/image/237734.jpg
14#
發(fā)表于 2025-3-24 00:32:34 | 只看該作者
https://doi.org/10.1007/978-3-319-02765-4Bezier variant; approximation; bounded variation; convergence; linear combinations; linear positive opera
15#
發(fā)表于 2025-3-24 03:10:00 | 只看該作者
16#
發(fā)表于 2025-3-24 07:28:43 | 只看該作者
Some More Results on the Rate of Convergence,perators as special cases. They investigated their results for the classes of functions . [., .] and . [., .]. Also, Hua and Shaw [156] extended this problem for linear integral operators with a not necessarily positive kernel.
17#
發(fā)表于 2025-3-24 11:06:48 | 只看該作者
18#
發(fā)表于 2025-3-24 14:53:46 | 只看該作者
19#
發(fā)表于 2025-3-24 22:16:27 | 只看該作者
Vision-and-Language Pretraining for VQAperators as special cases. They investigated their results for the classes of functions . [., .] and . [., .]. Also, Hua and Shaw [156] extended this problem for linear integral operators with a not necessarily positive kernel.
20#
發(fā)表于 2025-3-25 01:46:45 | 只看該作者
https://doi.org/10.1007/978-981-19-2228-2ls. In more recent papers, some approximation properties of the Stancu-type generalization on different operators were discussed (see, e.g., [50, 133, 187, 238]). Future studies could address defining the Stancu-type generalization of other operators and the convergence behavior, asymptotic formulas
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
项城市| 台东县| 商南县| 洞头县| 葵青区| 登封市| 潞城市| 平泉县| 晋江市| 泾阳县| 宝山区| 宜川县| 和田市| 东宁县| 获嘉县| 通海县| 安宁市| 墨江| 漠河县| 双桥区| 怀来县| 惠安县| 建瓯市| 高唐县| 天全县| 台北市| 海淀区| 武乡县| 武功县| 馆陶县| 科技| 沙河市| 丰原市| 永嘉县| 锦州市| 博客| 昭平县| 凤山县| 虹口区| 旬阳县| 金坛市|