找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convection in Porous Media; Donald A. Nield,Adrian Bejan Textbook 19992nd edition Springer-Verlag New York 1999 energy.fluid mechanics.hea

[復(fù)制鏈接]
樓主: Remodeling
11#
發(fā)表于 2025-3-23 10:09:41 | 只看該作者
12#
發(fā)表于 2025-3-23 15:51:49 | 只看該作者
https://doi.org/10.1007/978-94-015-7293-4usual situation) or it undergoes small deformation. The interconnectedness of the void (the pores) allows the flow of one or more fluids through the material. In the simplest situation (“single-phase flow”) the void is saturated by a single fluid. In “two-phase flow” a liquid and a gas share the void space.
13#
發(fā)表于 2025-3-23 18:44:00 | 只看該作者
14#
發(fā)表于 2025-3-23 22:28:34 | 只看該作者
15#
發(fā)表于 2025-3-24 03:12:56 | 只看該作者
Springer-Verlag New York 1999
16#
發(fā)表于 2025-3-24 08:05:55 | 只看該作者
Mechanics of Fluid Flow Through a Porous Medium,usual situation) or it undergoes small deformation. The interconnectedness of the void (the pores) allows the flow of one or more fluids through the material. In the simplest situation (“single-phase flow”) the void is saturated by a single fluid. In “two-phase flow” a liquid and a gas share the void space.
17#
發(fā)表于 2025-3-24 13:32:03 | 只看該作者
External Natural Convection,ortant. For small values of the Rayleigh number Ra, perturbation methods are appropriate. At large values of Ra thermal boundary layers are formed, and boundary layer theory is the obvious method of investigation. This approach forms the subject of much of this chapter. We follow, to a large extent, the discussion by Cheng (1985a).
18#
發(fā)表于 2025-3-24 14:58:35 | 只看該作者
19#
發(fā)表于 2025-3-24 19:34:11 | 只看該作者
20#
發(fā)表于 2025-3-25 00:55:57 | 只看該作者
https://doi.org/10.1007/978-94-015-8030-4Since we have dealt with natural convection and forced convection in some detail, our treatment of mixed convection can be brief. It is guided by the review paper by Lai .. (1991a). We start with a treatment of boundary layer flow on heated plane walls inclined at some nonzero angle to the horizontal.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和林格尔县| 确山县| 安福县| 紫阳县| 十堰市| 鲁山县| 浦东新区| 泰州市| 延边| 怀来县| 南投市| 大邑县| 泰和县| 澄江县| 邳州市| 吉林市| 红桥区| 建始县| 正镶白旗| 伽师县| 绥棱县| 凤山县| 普陀区| 连州市| 彰化市| 芦溪县| 明水县| 信阳市| 工布江达县| 凉城县| 贵州省| 津南区| 嘉义市| 大丰市| 临桂县| 海丰县| 宽城| 滦南县| 凤台县| 宜阳县| 县级市|