找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Control of Linear Systems with Regulation and Input Constraints; A. Saberi,A. Stoorvogel,P. Sannuti Book 2000 Springer-Verlag London Limit

[復(fù)制鏈接]
樓主: 惡化
31#
發(fā)表于 2025-3-26 22:26:45 | 只看該作者
Control of Linear Systems with Regulation and Input Constraints
32#
發(fā)表于 2025-3-27 04:33:50 | 只看該作者
33#
發(fā)表于 2025-3-27 05:56:34 | 只看該作者
, optimal control with an output regulation constraint — discrete-time systems,r, that there is no loss at all in the achievable performance because of the added output regulation constraint whenever proper (or strictly proper) controllers are used. However, although the achievable performance is not compromised because of the added output regulation constraint, as well known
34#
發(fā)表于 2025-3-27 13:00:27 | 只看該作者
What does one do if output regulation is not possible?,e seen to be a power signal. In this case, since . does not asymptotically go to zero, one could minimize in the asymptotic sense the power of the signal .. In other words, in the classical output regulation we seek to render . asymptotically zero, where as whenever it is not possible to do so we co
35#
發(fā)表于 2025-3-27 16:45:54 | 只看該作者
36#
發(fā)表于 2025-3-27 20:07:33 | 只看該作者
37#
發(fā)表于 2025-3-27 22:56:56 | 只看該作者
38#
發(fā)表于 2025-3-28 02:13:19 | 只看該作者
39#
發(fā)表于 2025-3-28 08:19:53 | 只看該作者
40#
發(fā)表于 2025-3-28 12:44:30 | 只看該作者
https://doi.org/10.1007/978-3-662-01977-1ed. Namely, whether the added output regulation constraint in a problem compromises the achievable performance. In this regard, as in Chapter 10, there is a certain loss or decay in the achievable performance due to the added output regulation constraint, and this decay will be explicitly expressed in terms of a static optimization problem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
剑川县| 西和县| 晴隆县| 平泉县| 克山县| 锦屏县| 搜索| 大连市| 岳普湖县| 定西市| 九寨沟县| 正阳县| 凤台县| 沙田区| 建始县| 昌黎县| 长垣县| 台中县| 临泽县| 浑源县| 赣州市| 灌阳县| 阳原县| 安福县| 卓尼县| 同心县| 同江市| 江门市| 天柱县| 商城县| 丹凤县| 霸州市| 安图县| 富阳市| 姜堰市| 开封县| 电白县| 清水河县| 军事| 刚察县| 沁阳市|