找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Control of Coupled Partial Differential Equations; Karl Kunisch,Jürgen Sprekels,Fredi Tr?ltzsch Conference proceedings 2007 Birkh?user Bas

[復(fù)制鏈接]
樓主: Melanin
51#
發(fā)表于 2025-3-30 10:04:47 | 只看該作者
52#
發(fā)表于 2025-3-30 14:20:35 | 只看該作者
53#
發(fā)表于 2025-3-30 19:09:36 | 只看該作者
54#
發(fā)表于 2025-3-31 00:02:24 | 只看該作者
Optimal Control Problems with Convex Control Constraints,, . is an set-valued mapping that is assumed to be measurable with convex and closed images. We establish first-order necessary as well as second-order sufficient optimality conditions. And we prove regularity results for locally optimal controls.
55#
發(fā)表于 2025-3-31 03:20:44 | 只看該作者
56#
發(fā)表于 2025-3-31 07:58:20 | 只看該作者
Schritt 3: Synchronisieren und verbinden, step. The corresponding optimality systems are discretized by linear finite elements, using a partly exact summarized midpoint rule for the discretization of the nonlocal radiation interface conditions. The paper ends with some numerical results demonstrating the efficiency of the proposed method.
57#
發(fā)表于 2025-3-31 11:57:41 | 只看該作者
58#
發(fā)表于 2025-3-31 13:43:48 | 只看該作者
Testergebnisse von ausgew?hlten Berufen the family of admissible domains with respect to the Hausdorff metrics as well as in the sense of Kuratowski-Mosco. The analysis is performed for the range of adiabatic ratio . > 1 in the pressure law .(.) = .. and it is based on the technique proposed in [.] for the discretized N-S-E.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
墨玉县| 怀远县| 乌鲁木齐县| 泸定县| 丰宁| 铅山县| 云梦县| 临海市| 孟津县| 安平县| 平乡县| 禹城市| 贺兰县| 阿城市| 尼玛县| 赣州市| 宣威市| 河北省| 于都县| 驻马店市| 报价| 鸡西市| 舞阳县| 江达县| 忻州市| 平度市| 金川县| 松桃| 务川| 吉隆县| 阿克陶县| 昆山市| 富阳市| 炎陵县| 武冈市| 龙川县| 黄梅县| 浦县| 潮州市| 兰考县| 灌南县|