找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Control and Chaos; Kevin Judd,Alistair Mees,Thomas L. Vincent Conference proceedings 1997 Birkh?user Boston 1997 Nonlinear system.bifurcat

[復制鏈接]
樓主: papertrans
31#
發(fā)表于 2025-3-26 22:14:47 | 只看該作者
978-1-4612-7540-4Birkh?user Boston 1997
32#
發(fā)表于 2025-3-27 05:11:24 | 只看該作者
33#
發(fā)表于 2025-3-27 06:52:37 | 只看該作者
Creating and Targeting Periodic Orbitswe develop algorithms that will target and stabilize such maps in the presence of a small amount of noise. In particular, we show how to create and stabilize new periodic orbits which are close to existing non-periodic trajectories.
34#
發(fā)表于 2025-3-27 11:34:18 | 只看該作者
Hitting Times to a Target for the Baker’s Map not its location. An algorithm is then presented to compute average hitting times for ergodic processes..Finally hitting times for the Baker’s Map with a specified target are calculated with and without control. The average hitting time without control is 57. With a small control the average hitting time is 3.63.
35#
發(fā)表于 2025-3-27 16:47:25 | 只看該作者
Mathematical Modelinghttp://image.papertrans.cn/c/image/237311.jpg
36#
發(fā)表于 2025-3-27 21:44:50 | 只看該作者
Versorgungsmanagement im station?ren Sektortrajectories or time series. Such reconstructions can produce other trajectories with similar dynamics, so giving a system on which one can conduct experiments, but can also be used to locate equilibria and determine their types, carry out bifurcation studies, estimate state manifolds and so on. In
37#
發(fā)表于 2025-3-27 23:46:01 | 只看該作者
38#
發(fā)表于 2025-3-28 03:56:32 | 只看該作者
Schluss: Dystopie digitaler Schockstarre, be constructed from time-series data and a controller attached to the model. Recent research has shown that the minimum description length principle provides a good model without over-fitting. An algorithm for constructing minimum description length radial basis models and an example illustrating t
39#
發(fā)表于 2025-3-28 07:41:35 | 只看該作者
40#
發(fā)表于 2025-3-28 14:08:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
沙坪坝区| 汕尾市| 东辽县| 杭锦后旗| 临猗县| 罗定市| 桓台县| 长宁区| 乌苏市| 阿鲁科尔沁旗| 商河县| 疏勒县| 兴义市| 靖边县| 甘泉县| 德昌县| 河源市| 襄汾县| 共和县| 平舆县| 锦州市| 延长县| 闸北区| 璧山县| 辽阳县| 郁南县| 班玛县| 太谷县| 汝南县| 浦北县| 成安县| 衡阳县| 石林| 永春县| 河池市| 大足县| 平邑县| 道孚县| 阿图什市| 晋州市| 化隆|