找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions to a General Asymptotic Statistical Theory; J. Pfanzagl Book 1982 Springer-Verlag, New York Inc. 1982 Asymptotische Wirksamk

[復制鏈接]
樓主: 多話
11#
發(fā)表于 2025-3-23 10:58:16 | 只看該作者
Verletzungen der Schlagadern am Hirngrund,Let (x .) be a measurable space, and β the basic family of p-measures Q | A. Let β. ? β be a subfamily, interpreted as a . which is to be tested against alternatives from β — β. .
12#
發(fā)表于 2025-3-23 14:18:00 | 只看該作者
13#
發(fā)表于 2025-3-23 21:05:50 | 只看該作者
V. A. Tverdislov,E. N. GerasimovaLet β be a family of p-measures, and κ: β → IR a differentiable functional. Let κ(·,β the canonical gradient of κ at P.
14#
發(fā)表于 2025-3-24 01:58:49 | 只看該作者
Funktionen zur Modellierung von Systemen,Let β. be the family of all distributions on B which admit a posi- tive and symmetric Lebesgue density, and β ? β. a full family of distributions with positive Lebesgue density. Let p denote the Lebesgue density of P, ?(x,P):= log p(x), and ?’(x,P):= (d/dx)?(x,P).
15#
發(fā)表于 2025-3-24 04:38:48 | 只看該作者
Vasodilators in Chronic Heart FailureFor i ∈ {1,. . .,m} let (x., .) be measurable spaces. In the following, sums Σ and products ×,Π over i always run from 1 to m. Let β be a family of p-measures on ×., and κ: β → IR a functional. Our problem is to estimate κ(P) under various conditions on β.
16#
發(fā)表于 2025-3-24 10:32:33 | 只看該作者
17#
發(fā)表于 2025-3-24 11:27:39 | 只看該作者
18#
發(fā)表于 2025-3-24 16:37:05 | 只看該作者
Introduction,This book intends to provide a basis for a unified asymptotic statistical theory, comprising parametric as well as non-parametric models.
19#
發(fā)表于 2025-3-24 22:12:15 | 只看該作者
The Local Structure of Families of Probability Measures,In this section we develop the concept of a tangent cone which seems appropriate for describing the . of a family of p-measures. Our purpose is to seize upon those local properties which are essential for the asymptotic performance of statistical procedures .
20#
發(fā)表于 2025-3-25 00:32:01 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 19:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
武平县| 松潘县| 华池县| 刚察县| 英超| 苗栗市| 普格县| 龙江县| 石泉县| 武宁县| 哈巴河县| 凤阳县| 青海省| 沛县| 塔城市| 满洲里市| 安陆市| 玉屏| 吕梁市| 南安市| 揭西县| 丹寨县| 遂宁市| 英山县| 六安市| 宣城市| 遵化市| 孟连| 都江堰市| 都兰县| 田阳县| 阜南县| 吴堡县| 宾阳县| 渝北区| 南汇区| 米泉市| 宁海县| 石嘴山市| 同江市| 特克斯县|