找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions to Complex Analysis and Analytic Geometry; Dedicated to Pierre Henri Skoda,Jean-Marie Trépreau Book 1994 Springer Fachmedien

[復制鏈接]
樓主: Glycemic-Index
21#
發(fā)表于 2025-3-25 05:26:38 | 只看該作者
22#
發(fā)表于 2025-3-25 09:11:43 | 只看該作者
,Verflüssigtes Ammoniak als L?sungsmittel, = .;. > 0} except for a finite number of points {.} ? Π., and if .(.) tends to zero as |.| → ∞ in the closed half plane Π., then . where . is an arbitrary positive number and . denotes the differential form .(.)....
23#
發(fā)表于 2025-3-25 12:12:02 | 只看該作者
24#
發(fā)表于 2025-3-25 16:02:34 | 只看該作者
Der allgemeine Koordinatenbegriff,0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafyOaIyRbae% badaWgaaWcbaGaamOyaaqabaaaaa!3885!]]
25#
發(fā)表于 2025-3-25 20:19:21 | 只看該作者
26#
發(fā)表于 2025-3-26 03:35:10 | 只看該作者
27#
發(fā)表于 2025-3-26 07:52:26 | 只看該作者
https://doi.org/10.1007/978-3-642-50821-9functions coming from associated Stein manifolds, rational functions from related projective varieties, Θ-functions on abelian groups, Fourier-Jacobi series,... Difficulties arise, for example, because the ambient manifolds are in general non-compact, non-K?hlerian, and the relevant cohomology groups are infinite-dimensional.
28#
發(fā)表于 2025-3-26 09:29:41 | 只看該作者
29#
發(fā)表于 2025-3-26 12:38:03 | 只看該作者
Subvarieties of homogeneous and almost homogeneous manifolds,functions coming from associated Stein manifolds, rational functions from related projective varieties, Θ-functions on abelian groups, Fourier-Jacobi series,... Difficulties arise, for example, because the ambient manifolds are in general non-compact, non-K?hlerian, and the relevant cohomology groups are infinite-dimensional.
30#
發(fā)表于 2025-3-26 18:50:50 | 只看該作者
Contributions to Complex Analysis and Analytic GeometryDedicated to Pierre
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
潼关县| 兴安县| 岳阳市| 开平市| 大荔县| 平度市| 克什克腾旗| 项城市| 扎兰屯市| 思南县| 宁波市| 云龙县| 武功县| 安康市| 都江堰市| 新源县| 读书| 黄梅县| 兰西县| 宁远县| 永川市| 衢州市| 五常市| 申扎县| 许昌市| 黎城县| 元谋县| 永修县| 台东县| 靖西县| 洛扎县| 汉沽区| 军事| 陆丰市| 政和县| 肇州县| 南汇区| 合江县| 固始县| 延寿县| 旅游|