找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions in Mathematical Physics; A Tribute to Gerard S. Twareque Ali,Kalyan B. Sinha Book 2007 Hindustan Book Agency (India) 2007

[復(fù)制鏈接]
樓主: 復(fù)雜
21#
發(fā)表于 2025-3-25 04:30:16 | 只看該作者
Physical Applications of Algebras of Unbounded Operators,ginally motivated by physical arguments, contain almost no physics at all. On the contrary the mathematical aspects of these algebras have been analyzed in many details and this analysis produced, up to now, the monographes [32] and [2]. Some physics appeared first in [28] and [31], in the attempt t
22#
發(fā)表于 2025-3-25 11:08:14 | 只看該作者
23#
發(fā)表于 2025-3-25 12:34:48 | 只看該作者
24#
發(fā)表于 2025-3-25 18:39:29 | 只看該作者
Infinite Divisibility in Euclidean Quantum Mechanics,e real potential .(.) is chosen so that the spectrum of . is nonnegative and the real, normalizable, nowhere vanishing ground state .(.) has zero energy eigenvalue; such systems are referred to as “simple systems” in this article. In this case, the ground state itself determines the Hamiltonian comp
25#
發(fā)表于 2025-3-25 21:37:53 | 只看該作者
The C* Axioms and the Phase Space Fomalism of Quantum Mechanics,em in an algebraic setting using the language of Irving Segal [19], and then continuing to obtain the C*-algebraic formalism for a physical system. Of these axioms, only the fifth contained an assumption that was questionable in its physical content. Bearing in mind that for each observable . and st
26#
發(fā)表于 2025-3-26 04:04:51 | 只看該作者
Stochastic Flow on the Quantum Heisenberg Manifold,ometry of such a manifold as a concrete example in non-commutative geometry [3]. In this article, a canonical non-commutative (quantum) stochastic flow is constructed on the quantum Heisenberg manifold which in a natural way is associated with the Dirac operator of the manifold.
27#
發(fā)表于 2025-3-26 05:36:40 | 只看該作者
28#
發(fā)表于 2025-3-26 11:47:37 | 只看該作者
29#
發(fā)表于 2025-3-26 16:09:30 | 只看該作者
30#
發(fā)表于 2025-3-26 17:57:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 23:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汝阳县| 北海市| 通辽市| 汕头市| 潮安县| 科尔| 扎鲁特旗| 惠东县| 衢州市| 进贤县| 万宁市| 宜昌市| 吴桥县| 枣阳市| 安龙县| 华宁县| 绩溪县| 府谷县| 永州市| 巢湖市| 韩城市| 舞钢市| 清镇市| 榆树市| 应城市| 繁峙县| 资源县| 通化县| 余庆县| 大方县| 广元市| 墨玉县| 视频| 永康市| 罗山县| 巍山| 桐乡市| 炎陵县| 定安县| 商城县| 新野县|