找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuum Mechanics, Applied Mathematics and Scientific Computing:Godunov‘s Legacy; A Liber Amicorum to Gennadii V. Demidenko,Evgeniy Rome

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 09:02:02 | 只看該作者
52#
發(fā)表于 2025-3-30 15:59:30 | 只看該作者
Mathematical Models of Plasma Acceleration and Compression in Coaxial Channels,e mentioned. The computation results obtained over the last years are related to the accelerating and compressing flow property dependence on physical conditions and parameters of the problems and on the longitudinal magnetic field magnitude.
53#
發(fā)表于 2025-3-30 18:09:21 | 只看該作者
54#
發(fā)表于 2025-3-30 22:10:19 | 只看該作者
55#
發(fā)表于 2025-3-31 00:52:15 | 只看該作者
https://doi.org/10.1007/978-3-531-19592-6oblem of motion of a rarefied gas in the space of infinitely differentiable functions is formulated and proved. The solution is constructed as a series with recursively calculated coefficients. The solutions obtained are used to study the dynamics of the free boundary.
56#
發(fā)表于 2025-3-31 05:48:13 | 只看該作者
57#
發(fā)表于 2025-3-31 09:54:18 | 只看該作者
,Numerical Solution of the Axisymmetric Dirichlet–Neumann Problem for Laplace’s Equation (Algorithmss of a?rather general shape. The distinctive feature of this algorithm is the absence of the leading error term, which, as a?result, enables us to automatically adjust to arbitrary extra (extraordinary) supplies of smoothness of the sought solutions. In the case of .-smoothness, the solutions are co
58#
發(fā)表于 2025-3-31 14:26:28 | 只看該作者
59#
發(fā)表于 2025-3-31 17:31:53 | 只看該作者
60#
發(fā)表于 2025-3-31 21:46:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平度市| 贺州市| 景泰县| 卓尼县| 东源县| 宣恩县| 赤峰市| 巧家县| 南投县| 岳西县| 德阳市| 盐津县| 西和县| 布尔津县| 嘉兴市| 荥阳市| 济南市| 和平县| 株洲市| 浦县| 毕节市| 泾川县| 宣化县| 渝北区| 那坡县| 宝应县| 临猗县| 桂林市| 建德市| 高尔夫| 富平县| 萍乡市| 涟水县| 南部县| 四川省| 勃利县| 中超| 北宁市| 墨脱县| 池州市| 揭西县|