找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuous and Distributed Systems II; Theory and Applicati Viktor A. Sadovnichiy,Mikhail Z. Zgurovsky Book 2015 Springer International Pub

[復制鏈接]
樓主: 日月等
41#
發(fā)表于 2025-3-28 16:40:49 | 只看該作者
A Generalized Cahn-Hilliard Equation with Logarithmic PotentialsOur aim in this paper is to study the well-posedness for a generalized Cahn-Hilliard equation with a proliferation term and singular potentials. We also prove the existence of the global attractor.
42#
發(fā)表于 2025-3-28 21:36:50 | 只看該作者
43#
發(fā)表于 2025-3-29 00:46:05 | 只看該作者
44#
發(fā)表于 2025-3-29 06:30:21 | 只看該作者
https://doi.org/10.1007/978-3-322-90847-6. Problems of stability with respect to projection errors and stability with respect to system perturbations are studied. The presented results are the generalization of theorems on absolute stability of orthorecursive expansions in redundant systems of Hilbert space elements.
45#
發(fā)表于 2025-3-29 10:42:35 | 只看該作者
46#
發(fā)表于 2025-3-29 12:00:45 | 只看該作者
47#
發(fā)表于 2025-3-29 17:09:43 | 只看該作者
48#
發(fā)表于 2025-3-29 23:08:10 | 只看該作者
https://doi.org/10.1007/978-3-322-90874-2systems, that is, with constant parameters, inputs, and outputs. In many realistic situations these quantities can vary in time, either deterministically (e.g., periodically) or randomly. They are then nonautonomous dynamical systems for which the usual concepts of autonomous systems do not apply or
49#
發(fā)表于 2025-3-30 00:57:57 | 只看該作者
Experiment: Virtueller Kautschukmarkt,r of stochastic lattice differential equations, by using the concept of global random pullback attractor in the framework of random dynamical systems. General results on the existence of global compact random attractors are first provided for general random dynamical systems in weighted spaces of in
50#
發(fā)表于 2025-3-30 06:32:14 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
惠安县| 长葛市| 绍兴县| 娄底市| 阳东县| 永兴县| 乐都县| 南川市| 诸暨市| 江安县| 临安市| 大田县| 阿坝县| 维西| 通州市| 东阳市| 新丰县| 宁安市| 巴马| 杂多县| 城市| 宁都县| 苏尼特右旗| 会理县| 谢通门县| 汤阴县| 浦县| 东宁县| 龙州县| 安达市| 剑河县| 通河县| 临夏县| 平阴县| 桐城市| 滦平县| 旌德县| 祁东县| 密云县| 上虞市| 周宁县|