找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuous Semigroups of Holomorphic Self-maps of the Unit Disc; Filippo Bracci,Manuel D. Contreras,Santiago Díaz-M Book 2020 Springer Nat

[復(fù)制鏈接]
樓主: 惡夢
51#
發(fā)表于 2025-3-30 08:46:59 | 只看該作者
52#
發(fā)表于 2025-3-30 15:45:00 | 只看該作者
53#
發(fā)表于 2025-3-30 17:38:44 | 只看該作者
54#
發(fā)表于 2025-3-30 21:31:31 | 只看該作者
Models and Koenigs Functionsorbits of a semigroup or abstract basin of attraction) which inherits a complex structure of simply connected Riemann surface, in such a way that the semigroup is conjugated to a continuous group of automorphisms of such a Riemann surface. Moreover, our construction is universal, which implies that
55#
發(fā)表于 2025-3-31 01:41:02 | 只看該作者
56#
發(fā)表于 2025-3-31 06:35:17 | 只看該作者
Extension to the Boundarynd the principal part of prime ends of domains defined by Koenigs functions, we prove that every Koenigs function and every iterate of a semigroup have non-tangential limit at every boundary point. Moreover, the semigroup functional equation and the functional equation defined by the canonical model
57#
發(fā)表于 2025-3-31 13:06:08 | 只看該作者
58#
發(fā)表于 2025-3-31 15:58:14 | 只看該作者
59#
發(fā)表于 2025-3-31 20:37:17 | 只看該作者
Contact Pointschapter we examine the other points, which turn out to be contact points, and we show that super-repelling fixed points can be divided into two separated sets: those which are the landing point of a backward orbit and those which are the initial point of a maximal contact arc (in the latter case the
60#
發(fā)表于 2025-3-31 21:57:45 | 只看該作者
Poles of the Infinitesimal Generators terms of .-points (. pre-images of values with a positive (Carleson-Makarov) .-numbers) of the associated semigroup and of the associated Koenigs function. We also define a natural duality operation in the cone of infinitesimal generators and show that the regular poles of an infinitesimal generato
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 10:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朝阳县| 麻阳| 丹凤县| 从江县| 余姚市| 奉节县| 融水| 黔西县| 麦盖提县| 家居| 中山市| 广河县| 赫章县| 铁岭县| 石屏县| 浦县| 沙田区| 叙永县| 江西省| 巍山| 遂川县| 太仆寺旗| 奎屯市| 郸城县| 包头市| 和平县| 吕梁市| 儋州市| 凯里市| 武威市| 哈巴河县| 隆回县| 鲜城| 惠州市| 华宁县| 阿城市| 营山县| 永登县| 韶关市| 富顺县| 大同县|