找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuous Martingales and Brownian Motion; Daniel Revuz,Marc Yor Book 19911st edition Springer-Verlag Berlin Heidelberg 1991 Brownian mot

[復制鏈接]
樓主: 并排一起
11#
發(fā)表于 2025-3-23 10:14:37 | 只看該作者
12#
發(fā)表于 2025-3-23 14:30:16 | 只看該作者
https://doi.org/10.1007/978-3-322-83046-3In this chapter we study the effect on the space of continuous semimartingales of an absolutely continuous change of probability measure. The results we describe have far-reaching consequences from the theoretical point of view as is hinted at in Sect. 2; they also permit many explicit computations as is seen in Sect. 3.
13#
發(fā)表于 2025-3-23 20:29:42 | 只看該作者
14#
發(fā)表于 2025-3-23 23:19:48 | 只看該作者
15#
發(fā)表于 2025-3-24 03:23:06 | 只看該作者
16#
發(fā)表于 2025-3-24 09:19:54 | 只看該作者
17#
發(fā)表于 2025-3-24 11:28:05 | 只看該作者
Preliminaries,In this chapter, we review a few basic facts, mainly from integration and classical probability theories, which will be used throughout the book without further ado. Some other prerequisites, usually from calculus, which will be used in some special parts are collected in the Appendix at the end of the book.
18#
發(fā)表于 2025-3-24 18:44:15 | 只看該作者
Martingales,Martingales are a very important subject in their own right as well as by their relationship with analysis. Their kinship to BM will make them one of our main subjects of interest as well as one of our foremost tools. In this chapter, we describe some of their basic properties which we shall use throughout the book.
19#
發(fā)表于 2025-3-24 21:19:02 | 只看該作者
Representation of Martingales,In this chapter, we take up the study of Brownian motion and, more generally, of continuous martingales. We will use the stochastic integration of Chap. IV together with the technique of time changes to be introduced presently.
20#
發(fā)表于 2025-3-25 02:26:09 | 只看該作者
Local Times,With It?’s formula, we saw how ..-functions operate on continuous semi-martingales. We now extend this to convex functions, thus introducing the important notion of local time.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 02:00
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
贺州市| 丹江口市| 连南| 台前县| 江华| 衡阳县| 贡山| 将乐县| 富蕴县| 志丹县| 蚌埠市| 壶关县| 新邵县| 成安县| 呼图壁县| 浏阳市| 健康| 中江县| 惠东县| 盐城市| 白河县| 雅安市| 庐江县| 玉门市| 宿州市| 海南省| 万全县| 清新县| 贡嘎县| 绥中县| 合作市| 静宁县| 都昌县| 新干县| 夏邑县| 安顺市| 叶城县| 温泉县| 江油市| 湖南省| 大庆市|