找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuous Martingales and Brownian Motion; Daniel Revuz,Marc Yor Book 19911st edition Springer-Verlag Berlin Heidelberg 1991 Brownian mot

[復(fù)制鏈接]
樓主: 并排一起
11#
發(fā)表于 2025-3-23 10:14:37 | 只看該作者
12#
發(fā)表于 2025-3-23 14:30:16 | 只看該作者
https://doi.org/10.1007/978-3-322-83046-3In this chapter we study the effect on the space of continuous semimartingales of an absolutely continuous change of probability measure. The results we describe have far-reaching consequences from the theoretical point of view as is hinted at in Sect. 2; they also permit many explicit computations as is seen in Sect. 3.
13#
發(fā)表于 2025-3-23 20:29:42 | 只看該作者
14#
發(fā)表于 2025-3-23 23:19:48 | 只看該作者
15#
發(fā)表于 2025-3-24 03:23:06 | 只看該作者
16#
發(fā)表于 2025-3-24 09:19:54 | 只看該作者
17#
發(fā)表于 2025-3-24 11:28:05 | 只看該作者
Preliminaries,In this chapter, we review a few basic facts, mainly from integration and classical probability theories, which will be used throughout the book without further ado. Some other prerequisites, usually from calculus, which will be used in some special parts are collected in the Appendix at the end of the book.
18#
發(fā)表于 2025-3-24 18:44:15 | 只看該作者
Martingales,Martingales are a very important subject in their own right as well as by their relationship with analysis. Their kinship to BM will make them one of our main subjects of interest as well as one of our foremost tools. In this chapter, we describe some of their basic properties which we shall use throughout the book.
19#
發(fā)表于 2025-3-24 21:19:02 | 只看該作者
Representation of Martingales,In this chapter, we take up the study of Brownian motion and, more generally, of continuous martingales. We will use the stochastic integration of Chap. IV together with the technique of time changes to be introduced presently.
20#
發(fā)表于 2025-3-25 02:26:09 | 只看該作者
Local Times,With It?’s formula, we saw how ..-functions operate on continuous semi-martingales. We now extend this to convex functions, thus introducing the important notion of local time.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄大仙区| 台湾省| 囊谦县| 灌南县| 开化县| 巴林右旗| 确山县| 安徽省| 织金县| 杭锦后旗| 夏河县| 龙里县| 喜德县| 左权县| 平南县| 胶州市| 福建省| 宣化县| 通海县| 永川市| 牡丹江市| 闻喜县| 甘洛县| 玉山县| 马边| 合阳县| 汨罗市| 沭阳县| 平塘县| 临江市| 江安县| 和硕县| 遂溪县| 苏尼特右旗| 忻州市| 齐齐哈尔市| 宁明县| 汉沽区| 淮南市| 中方县| 柞水县|