找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuous Bounded Cohomology of Locally Compact Groups; Nicolas Monod Book 2001 Springer-Verlag Berlin Heidelberg 2001 Bounded cohomology

[復(fù)制鏈接]
查看: 11391|回復(fù): 36
樓主
發(fā)表于 2025-3-21 16:36:30 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Continuous Bounded Cohomology of Locally Compact Groups
編輯Nicolas Monod
視頻videohttp://file.papertrans.cn/237/236987/236987.mp4
概述Includes supplementary material:
叢書(shū)名稱(chēng)Lecture Notes in Mathematics
圖書(shū)封面Titlebook: Continuous Bounded Cohomology of Locally Compact Groups;  Nicolas Monod Book 2001 Springer-Verlag Berlin Heidelberg 2001 Bounded cohomology
描述Recent research has repeatedly led to connections between important rigidity questions and bounded cohomology. However, the latter has remained by and large intractable. This monograph introduces the functorial study of the continuous bounded cohomology for topological groups, with coefficients in Banach modules. The powerful techniques of this more general theory have successfully solved a number of the original problems in bounded cohomology. As applications, one obtains, in particular, rigidity results for actions on the circle, for representations on complex hyperbolic spaces and on Teichmüller spaces. A special effort has been made to provide detailed proofs or references in quite some generality.
出版日期Book 2001
關(guān)鍵詞Bounded cohomology; Cohomology; Lattice; continuous cohomology; homology; lattices in Lie groups; rigidity
版次1
doihttps://doi.org/10.1007/b80626
isbn_softcover978-3-540-42054-5
isbn_ebook978-3-540-44962-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2001
The information of publication is updating

書(shū)目名稱(chēng)Continuous Bounded Cohomology of Locally Compact Groups影響因子(影響力)




書(shū)目名稱(chēng)Continuous Bounded Cohomology of Locally Compact Groups影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Continuous Bounded Cohomology of Locally Compact Groups網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Continuous Bounded Cohomology of Locally Compact Groups網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Continuous Bounded Cohomology of Locally Compact Groups被引頻次




書(shū)目名稱(chēng)Continuous Bounded Cohomology of Locally Compact Groups被引頻次學(xué)科排名




書(shū)目名稱(chēng)Continuous Bounded Cohomology of Locally Compact Groups年度引用




書(shū)目名稱(chēng)Continuous Bounded Cohomology of Locally Compact Groups年度引用學(xué)科排名




書(shū)目名稱(chēng)Continuous Bounded Cohomology of Locally Compact Groups讀者反饋




書(shū)目名稱(chēng)Continuous Bounded Cohomology of Locally Compact Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:16:36 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:15:50 | 只看該作者
地板
發(fā)表于 2025-3-22 04:57:46 | 只看該作者
5#
發(fā)表于 2025-3-22 10:37:42 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/c/image/236987.jpg
6#
發(fā)表于 2025-3-22 15:45:24 | 只看該作者
https://doi.org/10.1007/b80626Bounded cohomology; Cohomology; Lattice; continuous cohomology; homology; lattices in Lie groups; rigidity
7#
發(fā)表于 2025-3-22 17:57:54 | 只看該作者
978-3-540-42054-5Springer-Verlag Berlin Heidelberg 2001
8#
發(fā)表于 2025-3-23 01:15:38 | 只看該作者
Culminating Lessons, Moving Forwardnd surprising theorems on the geometry of manifolds. This cohomology H. .(.) is defined exactly like usual singular cohomology, except that all cochains are required to be bounded. Similarly, one can define for a group Г the bounded cohomology H. .(Г) by the usual inhomogeneous complex with the only
9#
發(fā)表于 2025-3-23 04:17:30 | 只看該作者
Culminating Lessons, Moving Forwardinuous bounded cohomology will be formulated in a homological language for which the fundamental objects are various types of .. Whenever available, spaces of . . type axe distinguished representatives of the latter.
10#
發(fā)表于 2025-3-23 08:16:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 14:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
财经| 延安市| 中江县| 永川市| 敦化市| 临沂市| 营山县| 盐亭县| 长海县| 蓝山县| 浦县| 大安市| 二连浩特市| 苍山县| 红原县| 宜丰县| 大厂| 巫溪县| 大田县| 称多县| 三明市| 罗平县| 凌源市| 丰台区| 万年县| 凤山市| 抚远县| 信宜市| 长白| 含山县| 革吉县| 壶关县| 桐乡市| 武定县| 万荣县| 内黄县| 营口市| 平顶山市| 阜新| 宾川县| 葫芦岛市|