找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuity, Integration and Fourier Theory; Adriaan C. Zaanen Textbook 1989 Springer-Verlag GmbH Germany, part of Springer Nature 1989 Ext

[復(fù)制鏈接]
樓主: 毛發(fā)
21#
發(fā)表于 2025-3-25 04:28:50 | 只看該作者
https://doi.org/10.1007/978-3-319-69886-1 near the jump and then steeply going downwards, starts to oscillate before diving down. An explanation of this phenomenon was discovered and explained already earlier by H. Wilbraham (1848), but this was forgotten for a long time.
22#
發(fā)表于 2025-3-25 10:12:43 | 只看該作者
Additional Results, near the jump and then steeply going downwards, starts to oscillate before diving down. An explanation of this phenomenon was discovered and explained already earlier by H. Wilbraham (1848), but this was forgotten for a long time.
23#
發(fā)表于 2025-3-25 14:56:57 | 只看該作者
24#
發(fā)表于 2025-3-25 19:41:38 | 只看該作者
25#
發(fā)表于 2025-3-25 21:30:41 | 只看該作者
https://doi.org/10.1007/978-3-319-69886-1here || ? || denotes the uniform norm in .(.). Equivaiently, we may say that there exists a sequence (. : n = 1,2,…) of polynomials such that ||.–.|| → 0 as . → ∞. Is it possible to denote explicitly a sequence (.) satisfying this condition? The answer is affirmative. For . = [0,1] we may choose for . the . .(.), defined on [0,1] by
26#
發(fā)表于 2025-3-26 03:38:06 | 只看該作者
https://doi.org/10.1007/978-3-319-69886-1d of c.(.) is also used. The sequence (.?(.) : . = 0, ±1, ±2,…) is then denoted by .?. For any . ∈ .(?,.) there is an analogous notion, although now it is not a sequence of numbers but again a function defined on the whole of ?. Precisely formulated, for . ∈ .(?,.) the . . of . is the function, defined for any . ∈ ? by
27#
發(fā)表于 2025-3-26 06:16:12 | 只看該作者
28#
發(fā)表于 2025-3-26 11:18:31 | 只看該作者
Fourier Series of Continuous Functions, (f.) is said to be an . on .. We immediately mention an example. For . = 0, ±1, ±2,…, let .(.) = (2π). on ?. The system (. : . = 0, ±1, ±2,…) is orthonormal on any interval [., . + 2π], i.e., on any interval of length 2π in ?. The proof is immediate by observing that
29#
發(fā)表于 2025-3-26 12:41:17 | 只看該作者
30#
發(fā)表于 2025-3-26 20:03:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 06:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜新市| 黔西| 澳门| 合水县| 桃江县| 长海县| 洞口县| 布拖县| 绵竹市| 图们市| 临澧县| 同江市| 黄大仙区| 读书| 云南省| 怀远县| 贵州省| 广河县| 盐城市| 香格里拉县| 九龙坡区| 梁山县| 奎屯市| 莒南县| 兴安县| 抚顺县| 永兴县| 青神县| 出国| 项城市| 子洲县| 临猗县| 诸城市| 竹溪县| 汉川市| 讷河市| 土默特右旗| 连南| 阿合奇县| 绵竹市| 锦州市|