找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuity, Integration and Fourier Theory; Adriaan C. Zaanen Textbook 1989 Springer-Verlag GmbH Germany, part of Springer Nature 1989 Ext

[復制鏈接]
樓主: 毛發(fā)
21#
發(fā)表于 2025-3-25 04:28:50 | 只看該作者
https://doi.org/10.1007/978-3-319-69886-1 near the jump and then steeply going downwards, starts to oscillate before diving down. An explanation of this phenomenon was discovered and explained already earlier by H. Wilbraham (1848), but this was forgotten for a long time.
22#
發(fā)表于 2025-3-25 10:12:43 | 只看該作者
Additional Results, near the jump and then steeply going downwards, starts to oscillate before diving down. An explanation of this phenomenon was discovered and explained already earlier by H. Wilbraham (1848), but this was forgotten for a long time.
23#
發(fā)表于 2025-3-25 14:56:57 | 只看該作者
24#
發(fā)表于 2025-3-25 19:41:38 | 只看該作者
25#
發(fā)表于 2025-3-25 21:30:41 | 只看該作者
https://doi.org/10.1007/978-3-319-69886-1here || ? || denotes the uniform norm in .(.). Equivaiently, we may say that there exists a sequence (. : n = 1,2,…) of polynomials such that ||.–.|| → 0 as . → ∞. Is it possible to denote explicitly a sequence (.) satisfying this condition? The answer is affirmative. For . = [0,1] we may choose for . the . .(.), defined on [0,1] by
26#
發(fā)表于 2025-3-26 03:38:06 | 只看該作者
https://doi.org/10.1007/978-3-319-69886-1d of c.(.) is also used. The sequence (.?(.) : . = 0, ±1, ±2,…) is then denoted by .?. For any . ∈ .(?,.) there is an analogous notion, although now it is not a sequence of numbers but again a function defined on the whole of ?. Precisely formulated, for . ∈ .(?,.) the . . of . is the function, defined for any . ∈ ? by
27#
發(fā)表于 2025-3-26 06:16:12 | 只看該作者
28#
發(fā)表于 2025-3-26 11:18:31 | 只看該作者
Fourier Series of Continuous Functions, (f.) is said to be an . on .. We immediately mention an example. For . = 0, ±1, ±2,…, let .(.) = (2π). on ?. The system (. : . = 0, ±1, ±2,…) is orthonormal on any interval [., . + 2π], i.e., on any interval of length 2π in ?. The proof is immediate by observing that
29#
發(fā)表于 2025-3-26 12:41:17 | 只看該作者
30#
發(fā)表于 2025-3-26 20:03:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 07:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
行唐县| 桑植县| 新田县| 河西区| 霍城县| 淮北市| 大名县| 会泽县| 临沧市| 南乐县| 和田县| 北票市| 娄底市| 临沧市| 晴隆县| 和政县| 会同县| 连云港市| 北辰区| 乌海市| 宣武区| 巩义市| 宁城县| 麻城市| 沁水县| 罗甸县| 思南县| 泸西县| 邳州市| 卢龙县| 哈密市| 临颍县| 巴林右旗| 吴江市| 金华市| 广河县| 宁远县| 柞水县| 平山县| 禹州市| 崇明县|