找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contemporary Research in Elliptic PDEs and Related Topics; Serena Dipierro Book 2019 Springer Nature Switzerland AG 2019 Partial different

[復(fù)制鏈接]
查看: 18735|回復(fù): 52
樓主
發(fā)表于 2025-3-21 17:51:28 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Contemporary Research in Elliptic PDEs and Related Topics
編輯Serena Dipierro
視頻videohttp://file.papertrans.cn/237/236680/236680.mp4
概述Includes quality contributions in fundamental fields of research.Accessible to PhD students and early career researchers.Written by high-impact authors with outstanding research records
叢書名稱Springer INdAM Series
圖書封面Titlebook: Contemporary Research in Elliptic PDEs and Related Topics;  Serena Dipierro Book 2019 Springer Nature Switzerland AG 2019 Partial different
描述.This volume collects contributions from the speakers at an INdAM Intensive period held at the University of Bari in 2017. The contributions cover several aspects of partial differential equations whose development in recent years has experienced major breakthroughs in terms of both theory and applications.?The topics covered include nonlocal equations, elliptic equations and systems, fully nonlinear equations, nonlinear parabolic equations, overdetermined boundary value problems, maximum principles, geometric analysis, control theory, mean field games, and bio-mathematics.?The authors are trailblazers in these topics and present their work in a way that is exhaustive and clearly accessible to PhD students and early career researcher. As such, the book offers an excellent introduction to a variety of fundamental topics of contemporary investigation and inspires novel and high-quality research..
出版日期Book 2019
關(guān)鍵詞Partial differential equations; Nonlocal equations; Nonlinear equations; Geometric analysis; Mean field
版次1
doihttps://doi.org/10.1007/978-3-030-18921-1
isbn_softcover978-3-030-18923-5
isbn_ebook978-3-030-18921-1Series ISSN 2281-518X Series E-ISSN 2281-5198
issn_series 2281-518X
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Contemporary Research in Elliptic PDEs and Related Topics影響因子(影響力)




書目名稱Contemporary Research in Elliptic PDEs and Related Topics影響因子(影響力)學(xué)科排名




書目名稱Contemporary Research in Elliptic PDEs and Related Topics網(wǎng)絡(luò)公開度




書目名稱Contemporary Research in Elliptic PDEs and Related Topics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Contemporary Research in Elliptic PDEs and Related Topics被引頻次




書目名稱Contemporary Research in Elliptic PDEs and Related Topics被引頻次學(xué)科排名




書目名稱Contemporary Research in Elliptic PDEs and Related Topics年度引用




書目名稱Contemporary Research in Elliptic PDEs and Related Topics年度引用學(xué)科排名




書目名稱Contemporary Research in Elliptic PDEs and Related Topics讀者反饋




書目名稱Contemporary Research in Elliptic PDEs and Related Topics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:01:54 | 只看該作者
2281-518X D students and early career researcher. As such, the book offers an excellent introduction to a variety of fundamental topics of contemporary investigation and inspires novel and high-quality research..978-3-030-18923-5978-3-030-18921-1Series ISSN 2281-518X Series E-ISSN 2281-5198
板凳
發(fā)表于 2025-3-22 00:57:47 | 只看該作者
地板
發(fā)表于 2025-3-22 08:15:24 | 只看該作者
,Dirichlet Problems for Fully Nonlinear Equations with “Subquadratic” Hamiltonians,, and having first order terms with power growth, we prove the existence and uniqueness of suitably defined viscosity solutions of Dirichlet problems and we further show that it is a Lipschitz continuous function.
5#
發(fā)表于 2025-3-22 12:20:05 | 只看該作者
Singularities in the Calculus of Variations,st treat the theory of linear elliptic systems and give some consequences. Then we discuss important singular solutions of De Giorgi, Giusti-Miranda, and Maz’ya to linear elliptic systems, and of Sverak-Yan in the nonlinear case. At the end we discuss the parabolic theory.
6#
發(fā)表于 2025-3-22 15:33:52 | 只看該作者
7#
發(fā)表于 2025-3-22 20:40:46 | 只看該作者
8#
發(fā)表于 2025-3-23 00:23:56 | 只看該作者
9#
發(fā)表于 2025-3-23 01:45:25 | 只看該作者
Dina Neiger,Leonid Churilov,Andrew FlitmanWe present some recent results obtained by the author on the regularity of solutions to nonlocal variational problems. In particular, we review the notion of fractional De Giorgi class, explain its role in nonlocal regularity theory, and propose some open questions in the subject.
10#
發(fā)表于 2025-3-23 06:15:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 09:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
井研县| 琼结县| 故城县| 金秀| 内江市| 罗平县| 嘉定区| 乌苏市| 桐柏县| 泾川县| 内丘县| 怀来县| 修水县| 南丹县| 屯昌县| 图木舒克市| 乾安县| 吉安县| 平遥县| 霍林郭勒市| 闵行区| 昂仁县| 清新县| 临朐县| 乌海市| 商洛市| 获嘉县| 永吉县| 晋宁县| 依安县| 楚雄市| 新竹县| 阿拉善盟| 嘉禾县| 光山县| 浮山县| 青田县| 四川省| 汉中市| 轮台县| 西乌珠穆沁旗|