找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan; Josef Dick,Frances Y. Kuo,Henryk Wo?niakowski Bo

[復制鏈接]
樓主: 惡夢
31#
發(fā)表于 2025-3-26 21:55:22 | 只看該作者
32#
發(fā)表于 2025-3-27 05:07:39 | 只看該作者
33#
發(fā)表于 2025-3-27 07:17:03 | 只看該作者
34#
發(fā)表于 2025-3-27 11:54:37 | 只看該作者
35#
發(fā)表于 2025-3-27 16:11:01 | 只看該作者
36#
發(fā)表于 2025-3-27 20:40:02 | 只看該作者
37#
發(fā)表于 2025-3-28 00:17:56 | 只看該作者
,Einführung in den Problemkreis,We prove that there is no strongly regular graph (SRG) with parameters (460, 153, 32, 60). The proof is based on a recent lower bound on the number of 4-cliques in a SRG and some applications of Euclidean representation of SRGs.
38#
發(fā)表于 2025-3-28 02:38:25 | 只看該作者
Gerd Steierwald,Jürgen GoldbachWe produce low-discrepancy infinite sequences which can be used to approximate the integral of a smooth periodic function restricted to a smooth convex domain with positive curvature in .. The proof depends on simultaneous Diophantine approximation and on appropriate estimates of the decay of the Fourier transform of characteristic functions.
39#
發(fā)表于 2025-3-28 06:40:18 | 只看該作者
,Optimale überwachung in der Praxis,Using recent results on subperiodic trigonometric Gaussian quadrature and the construction of subperiodic trigonometric orthogonal bases, we extend Sloan’s notion of hyperinterpolation to trigonometric spaces on subintervals of the period. The result is relevant, for example, to function approximation on spherical or toroidal rectangles.
40#
發(fā)表于 2025-3-28 11:02:47 | 只看該作者
There Is No Strongly Regular Graph with Parameters (460, 153, 32, 60),We prove that there is no strongly regular graph (SRG) with parameters (460, 153, 32, 60). The proof is based on a recent lower bound on the number of 4-cliques in a SRG and some applications of Euclidean representation of SRGs.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
石屏县| 香河县| 满洲里市| 黄陵县| 仁寿县| 肃南| 通海县| 武城县| 上杭县| 格尔木市| 湟源县| 敦煌市| 泉州市| 佛学| 芜湖市| 安塞县| 大宁县| 台中县| 常熟市| 高青县| 理塘县| 湟源县| 武威市| 崇礼县| 林口县| 卢龙县| 沙坪坝区| 长治市| 五常市| 沂南县| 鄂伦春自治旗| 丹东市| 三门峡市| 华亭县| 林西县| 揭西县| 施秉县| 临城县| 洮南市| 巨野县| 万安县|