找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contemporary Biostatistics with Biopharmaceutical Applications; Lanju Zhang,Ding-Geng (Din) Chen,Hui Quan Book 2019 The Editor(s) (if appl

[復(fù)制鏈接]
樓主: 吸收
21#
發(fā)表于 2025-3-25 06:49:04 | 只看該作者
22#
發(fā)表于 2025-3-25 11:20:07 | 只看該作者
A Global Optimization Algorithm for Sparse Mixed Membership Matrix Factorizationmization algorithm that provides a guaranteed .-global optimum for a sparse mixed membership matrix factorization problem. We test the algorithm on simulated data and a small real gene expression dataset and find the algorithm always bounds the global optimum across random initializations and explores multiple modes efficiently.
23#
發(fā)表于 2025-3-25 15:37:29 | 只看該作者
Optimal Adaptive Phase III Design with Interim Sample Size and Dose Determinatione. In this paper, we propose an optimized 2-stage phase III clinical trial design that combines all these techniques to offer the opportunity of dose selection and sample size determination based on the first stage data with strict type I error rate control and robust power across an effect size interval.
24#
發(fā)表于 2025-3-25 16:35:02 | 只看該作者
https://doi.org/10.1007/978-3-663-05157-2dance of specified components when a large amount of noise is present. More importantly, our approach accurately estimates the absolute level of the specified components in the presence of un-specified ones. Finally, it shows a superior performance when applied to deep deconvolution of blood samples.
25#
發(fā)表于 2025-3-25 20:20:48 | 只看該作者
Zum Praxisbezug der Unternehmensethikemented. In this article, considerations of the design and analysis of the non-randomized studies using the propensity score methodology are discussed from the statistical and regulatory perspectives.
26#
發(fā)表于 2025-3-26 03:59:31 | 只看該作者
https://doi.org/10.1007/978-3-663-05978-3inistic procedure, we conducted a small simulation study that mimics data from our Phase 2 trial. As analytical formulas for power calculations are not available for machine learning methods of biomarker/subgroup discovery, simulations utilizing existing early phase data should be conducted routinely for obtaining realistic estimates of power.
27#
發(fā)表于 2025-3-26 06:49:33 | 只看該作者
28#
發(fā)表于 2025-3-26 11:12:02 | 只看該作者
Some Statistical Considerations in Design and Analysis for Nonrandomized Comparative Studies Using Eemented. In this article, considerations of the design and analysis of the non-randomized studies using the propensity score methodology are discussed from the statistical and regulatory perspectives.
29#
發(fā)表于 2025-3-26 15:55:01 | 只看該作者
Evaluating Potential Subpopulations Using Stochastic SIDEScreen in a Cross-Over Trialinistic procedure, we conducted a small simulation study that mimics data from our Phase 2 trial. As analytical formulas for power calculations are not available for machine learning methods of biomarker/subgroup discovery, simulations utilizing existing early phase data should be conducted routinely for obtaining realistic estimates of power.
30#
發(fā)表于 2025-3-26 19:50:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 04:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
思茅市| 德令哈市| 浦东新区| 绵阳市| 大丰市| 湟中县| 林芝县| 奉节县| 金沙县| 潍坊市| 普安县| 封丘县| 定结县| 咸宁市| 家居| 海林市| 东辽县| 叶城县| 临沧市| 赣榆县| 富蕴县| 秭归县| 伽师县| 黎城县| 平武县| 玉门市| 景德镇市| 洮南市| 普格县| 斗六市| 祁门县| 金昌市| 时尚| 全椒县| 鄢陵县| 新丰县| 开阳县| 黄平县| 斗六市| 遵义市| 贡觉县|