找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contact and Symplectic Topology; Frédéric Bourgeois,Vincent Colin,András Stipsicz Book 2014 Copyright jointly owned by the János Bolyai Ma

[復(fù)制鏈接]
樓主: Taft
11#
發(fā)表于 2025-3-23 13:41:29 | 只看該作者
978-3-319-35063-9Copyright jointly owned by the János Bolyai Mathematical Society and Springer 2014
12#
發(fā)表于 2025-3-23 17:40:57 | 只看該作者
13#
發(fā)表于 2025-3-23 19:11:26 | 只看該作者
14#
發(fā)表于 2025-3-24 00:12:03 | 只看該作者
15#
發(fā)表于 2025-3-24 03:56:03 | 只看該作者
https://doi.org/10.1007/978-3-662-10716-4how to define overtwistedness. We start with an overview of some basic examples and theorems known so far, comparing them with analogous results in dimension three. We will also describe an easy construction of non-fillable manifolds by Fran Presas. Then we will explain how to use holomorphic curves
16#
發(fā)表于 2025-3-24 06:56:26 | 只看該作者
https://doi.org/10.1007/978-3-662-10716-4r homologies. Soon after, they associated to a contact structure . on a 3-manifold, an element of its Heegaard-Floer homology, the contact invariant .(.). This invariant has been used to prove a plethora of results in contact topology of 3-manifolds. In this series of lectures we introduce and revie
17#
發(fā)表于 2025-3-24 14:40:33 | 只看該作者
The UO2 Molecule and the UO 2 + Ion respect to gluings. In these notes we will introduce the key features of bordered Heegaard Floer homology: its formal structure, a precise definition of the invariants of surfaces, a sketch of the definitions of the 3-manifold invariants, and some hints at the analysis underlying the theory. We als
18#
發(fā)表于 2025-3-24 18:17:25 | 只看該作者
https://doi.org/10.1007/978-3-662-10719-5ometry of Affine Complex Manifolds, Colloquium Publications, vol.?59, .). It is compiled from two short lecture series given by the first author in 2012 at the Institute for Advanced Study, Princeton, and the Alfréd Rényi Institute of Mathematics, Budapest.
19#
發(fā)表于 2025-3-24 21:06:16 | 只看該作者
Mechanical and Thermal Propertiesred across a number of papers. We also discuss the origins of ECH, including various remarks and examples which have not been previously published. Finally, we review the recent application to four-dimensional symplectic embedding problems. This article is based on lectures given in Budapest and Mun
20#
發(fā)表于 2025-3-25 00:42:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汪清县| 铜梁县| 麦盖提县| 桐城市| 江华| 京山县| 郯城县| 蕉岭县| 乐都县| 栾川县| 林周县| 舞钢市| 新龙县| 珠海市| 张掖市| 进贤县| 玉溪市| 大城县| 钟山县| 仁化县| 确山县| 阳江市| 平乐县| 资源县| 马鞍山市| 阳谷县| 崇州市| 广汉市| 新泰市| 民权县| 广德县| 牡丹江市| 赤城县| 兴隆县| 东安县| 常州市| 宜宾县| 迁安市| 吴旗县| 枣庄市| 南投县|