找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Contact Mechanics of Articular Cartilage Layers; Asymptotic Models Ivan Argatov,Gennady Mishuris Book 2015 Springer International Publishin

[復(fù)制鏈接]
樓主: 揭發(fā)
31#
發(fā)表于 2025-3-26 22:47:49 | 只看該作者
Remediating Sites of Resource Extractionrk of the leading-order asymptotic model. Finally, the deformation problem for a transversely isotropic elastic layer bonded to a rigid substrate, and coated with a very thin elastic layer made of another transversely isotropic material is analyzed in Sect.?..
32#
發(fā)表于 2025-3-27 03:12:35 | 只看該作者
33#
發(fā)表于 2025-3-27 08:21:53 | 只看該作者
34#
發(fā)表于 2025-3-27 10:31:27 | 只看該作者
Remediating Sites of Resource Extractionermined analytically based on the exact solution for elliptical contact between thin cartilage layers generally modeled as viscoelastic incompressible layers. In Sect.?., the equivalent Hunt–Crossley model for articular contact is developed in the framework of the short-time contact model for thin bonded biphasic layers.
35#
發(fā)表于 2025-3-27 15:51:12 | 只看該作者
36#
發(fā)表于 2025-3-27 19:16:41 | 只看該作者
Frictionless Contact of Thin Viscoelastic Layers,odels for the viscoelastic case, based on the correspondence principle. In Sect.?., we consider the main features of the analytical technique for solving unilateral contact problems for a viscoelastic foundation. The axisymmetric contact problem for a thin bonded incompressible viscoelastic layer is
37#
發(fā)表于 2025-3-28 00:38:38 | 只看該作者
Linear Transversely Isotropic Biphasic Model for Articular Cartilage Layer,. In Sects.?. and ., we consider the linear biphasic models of confined and unconfined compression, respectively, for the biphasic stress relaxation and the biphasic creep tests. Finally, in Sect.?. we outline the biphasic poroviscoelastic model, which accounts for the inherent viscoelasticity of th
38#
發(fā)表于 2025-3-28 04:27:46 | 只看該作者
39#
發(fā)表于 2025-3-28 06:19:59 | 只看該作者
40#
發(fā)表于 2025-3-28 10:49:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 13:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
且末县| 苍南县| 南川市| 溆浦县| 瓮安县| 安阳市| 赤城县| 安国市| 伊宁市| 米林县| 桂平市| 新野县| 鄂托克旗| 福贡县| 拉孜县| 南雄市| 义乌市| 贵溪市| 依安县| 文水县| 九龙城区| 资阳市| 日照市| 陈巴尔虎旗| 盖州市| 湾仔区| 太康县| 石泉县| 福州市| 高尔夫| 郸城县| 渝中区| 营口市| 鞍山市| 旬邑县| 迁西县| 招远市| 湛江市| 五台县| 新昌县| 滁州市|