找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contact Mechanics; Proceedings of the 3 Jo?o A. C. Martins,Manuel D. P. Monteiro Marques Conference proceedings 2002 Springer Science+Busin

[復(fù)制鏈接]
樓主: 對將來事件
11#
發(fā)表于 2025-3-23 11:02:26 | 只看該作者
12#
發(fā)表于 2025-3-23 15:20:37 | 只看該作者
13#
發(fā)表于 2025-3-23 18:35:46 | 只看該作者
Solving Rocking Block Problems with Multiple ImpactsIn this paper, we present a solution to the multiple impact problem that may arise in the rocking blocks. We use an approach based on the impulse-momentum methods, the energetic coefficient of restitution, and the impulse transmission ratio.
14#
發(fā)表于 2025-3-24 00:26:35 | 只看該作者
Analysis of Eigenvalue Problems Modelling Friction: Sufficient Conditions of Non-Uniqueness for the This study is concerned with the Coulomb frictional contact problem in elastostatics. Introducing a convenient eigenvalue problem, it becomes possible to establish sufficient conditions of non-uniqueness for the continuous model. It can be also proven that these sufficient conditions are fulfilled under appropriate hypotheses.
15#
發(fā)表于 2025-3-24 02:25:06 | 只看該作者
16#
發(fā)表于 2025-3-24 06:32:52 | 只看該作者
17#
發(fā)表于 2025-3-24 11:39:47 | 只看該作者
18#
發(fā)表于 2025-3-24 16:03:05 | 只看該作者
19#
發(fā)表于 2025-3-24 21:50:40 | 只看該作者
On Integrating Stiff Multibody Dynamics with Contact and Frictionear implicit technique. The method is consistent whenever the stiff forces originate in springs and dampers. When the stiffness parameters increase towards infinity the subproblem to be solved in one step approaches the one where the stiff elements are replaced by joints, under the assumption that the friction cone of the limit system is pointed.
20#
發(fā)表于 2025-3-24 23:34:12 | 只看該作者
Analysis of Systems with Multiple Frictional Contactsf non-uniqueness and non-existence, a new kind of singularity is detected: coexistence of several stable solutions. Besides, it is shown that in a regular case where a unique solution exists, this solution might be unstable.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
琼结县| 拉孜县| 叙永县| 德兴市| 花莲市| 牟定县| 綦江县| 万山特区| 曲麻莱县| 吉木萨尔县| 岚皋县| 江永县| 伊川县| 时尚| 隆德县| 漯河市| 扎囊县| 朝阳市| 雷山县| 平潭县| 吐鲁番市| 青川县| 抚宁县| 黎川县| 麻城市| 南涧| 库伦旗| 石门县| 油尖旺区| 新巴尔虎右旗| 长海县| 建始县| 张家界市| 钟山县| 永平县| 石屏县| 姚安县| 昌邑市| 恩平市| 兴国县| 海口市|