找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contact Mechanics; Proceedings of the 3 Jo?o A. C. Martins,Manuel D. P. Monteiro Marques Conference proceedings 2002 Springer Science+Busin

[復(fù)制鏈接]
樓主: 對將來事件
11#
發(fā)表于 2025-3-23 11:02:26 | 只看該作者
12#
發(fā)表于 2025-3-23 15:20:37 | 只看該作者
13#
發(fā)表于 2025-3-23 18:35:46 | 只看該作者
Solving Rocking Block Problems with Multiple ImpactsIn this paper, we present a solution to the multiple impact problem that may arise in the rocking blocks. We use an approach based on the impulse-momentum methods, the energetic coefficient of restitution, and the impulse transmission ratio.
14#
發(fā)表于 2025-3-24 00:26:35 | 只看該作者
Analysis of Eigenvalue Problems Modelling Friction: Sufficient Conditions of Non-Uniqueness for the This study is concerned with the Coulomb frictional contact problem in elastostatics. Introducing a convenient eigenvalue problem, it becomes possible to establish sufficient conditions of non-uniqueness for the continuous model. It can be also proven that these sufficient conditions are fulfilled under appropriate hypotheses.
15#
發(fā)表于 2025-3-24 02:25:06 | 只看該作者
16#
發(fā)表于 2025-3-24 06:32:52 | 只看該作者
17#
發(fā)表于 2025-3-24 11:39:47 | 只看該作者
18#
發(fā)表于 2025-3-24 16:03:05 | 只看該作者
19#
發(fā)表于 2025-3-24 21:50:40 | 只看該作者
On Integrating Stiff Multibody Dynamics with Contact and Frictionear implicit technique. The method is consistent whenever the stiff forces originate in springs and dampers. When the stiffness parameters increase towards infinity the subproblem to be solved in one step approaches the one where the stiff elements are replaced by joints, under the assumption that the friction cone of the limit system is pointed.
20#
發(fā)表于 2025-3-24 23:34:12 | 只看該作者
Analysis of Systems with Multiple Frictional Contactsf non-uniqueness and non-existence, a new kind of singularity is detected: coexistence of several stable solutions. Besides, it is shown that in a regular case where a unique solution exists, this solution might be unstable.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 22:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新郑市| 文山县| 贵定县| 防城港市| 莱西市| 翁牛特旗| 荆门市| 融水| 文水县| 南部县| 璧山县| 林西县| 固原市| 濉溪县| 吴堡县| 蓬溪县| 丰宁| 沈丘县| 玛多县| 太保市| 江北区| 北京市| 浦县| 蓝田县| 出国| 许昌市| 北海市| 汉川市| 金湖县| 伊川县| 平阳县| 上虞市| 贵溪市| 庆云县| 金溪县| 来安县| 贵溪市| 白山市| 淮南市| 曲麻莱县| 黑河市|