找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contact Geometry of Slant Submanifolds; Bang-Yen Chen,Mohammad Hasan Shahid,Falleh Al-Sola Book 2022 The Editor(s) (if applicable) and The

[復制鏈接]
樓主: Denial
11#
發(fā)表于 2025-3-23 10:04:12 | 只看該作者
12#
發(fā)表于 2025-3-23 17:27:48 | 只看該作者
Markus Gerber,Jean-Daniel PascheB. Y. Chen’s concept of a slant submanifold can be translated into the context of contact metric geometry in a very natural fashion. In this chapter, we shall discuss the basic facts concerning this variant of the theory.
13#
發(fā)表于 2025-3-23 19:26:50 | 只看該作者
Dorothea Maria Stock,Philipp ErpfIn this survey paper, we provide an overview of the geometry of slant submanifolds in pointwise Kenmotsu space forms, with a focus on the curvature properties that set basic relationships between the main intrinsic and extrinsic invariants of submanifolds.
14#
發(fā)表于 2025-3-23 22:58:12 | 只看該作者
15#
發(fā)表于 2025-3-24 03:53:17 | 只看該作者
Gestaltungskonzepte der UnternehmensführungIn this survey paper, we present a brief summary concerning the slant geometry for submanifolds in metric .-manifolds, together with some applications. The notion of .-structure was introduced by K.
16#
發(fā)表于 2025-3-24 08:16:56 | 只看該作者
Techniken der UnternehmensführungThe purpose of this chapter is to study the geometry of various kinds of slant submanifolds in almost contact metric 3-structure manifolds.
17#
發(fā)表于 2025-3-24 13:10:50 | 只看該作者
https://doi.org/10.1007/978-3-658-41053-7Chen-Ricci inequality involving Ricci curvature and the squared mean curvature of different kinds of (slant) submanifolds of a conformal Sasakian space form tangent to the structure vector field of the ambient manifold are presented. Equality cases are also discussed.
18#
發(fā)表于 2025-3-24 16:38:52 | 只看該作者
19#
發(fā)表于 2025-3-24 21:44:13 | 只看該作者
20#
發(fā)表于 2025-3-25 02:05:38 | 只看該作者
,?kobilanzierung von mineralisiertem Schaum,A differentiable map . between Riemannian manifolds . and . is called a Riemannian submersion if . is onto and it satisfies .for . vector fields tangent to ., where . denotes the derivative map.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 08:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
崇文区| 台南县| 正镶白旗| 桂东县| 磐安县| 环江| 江门市| 浠水县| 博爱县| 怀仁县| 额济纳旗| 台南市| 娱乐| 南涧| 湘西| 石河子市| 离岛区| 八宿县| 渝中区| 建德市| 静安区| 察哈| 察隅县| 罗源县| 吉木乃县| 内黄县| 涿鹿县| 聂荣县| 望奎县| 江孜县| 乌苏市| 遂川县| 循化| 马龙县| 庆元县| 抚松县| 广水市| 湘阴县| 射洪县| 屯昌县| 无为县|