找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Constructive Theory of Functions of Several Variables; Proceedings of a Con Walter Schempp,Karl Zeller Conference proceedings 1977 Springer

[復(fù)制鏈接]
樓主: 驅(qū)逐
11#
發(fā)表于 2025-3-23 10:21:52 | 只看該作者
12#
發(fā)表于 2025-3-23 15:41:10 | 只看該作者
13#
發(fā)表于 2025-3-23 18:03:00 | 只看該作者
14#
發(fā)表于 2025-3-24 02:04:56 | 只看該作者
Splines minimizing rotation-invariant semi-norms in Sobolev spaces,plines in one dimension. In general, data functionals are only supposed to be distributions with compact supports, belonging to H.(?.); there may be infinitely many of them. Splines are then expressed as convolutions μ . |t|. (or μ . |t|. Log |t|) + polynomials.
15#
發(fā)表于 2025-3-24 05:40:00 | 只看該作者
https://doi.org/10.1007/BFb0086559Invariant; Konstruktive Funktionentheorie; Manifold; Several Variables; Variables; convolution; function; t
16#
發(fā)表于 2025-3-24 09:47:31 | 只看該作者
17#
發(fā)表于 2025-3-24 12:26:51 | 只看該作者
Constructive Theory of Functions of Several Variables978-3-540-37496-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
18#
發(fā)表于 2025-3-24 15:21:26 | 只看該作者
0075-8434 Overview: 978-3-540-08069-5978-3-540-37496-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
19#
發(fā)表于 2025-3-24 22:23:30 | 只看該作者
Richard Willst?tter,Arthur Stollpecial ideals a n-dimensional generalization of Max Noether‘s theorem is obtained. This generalization enables us to answer questions arising in the constructive theory of functions as it is shown by three examples.
20#
發(fā)表于 2025-3-25 00:23:45 | 只看該作者
Untersuchung der Farbstoffgemische,h the dimension of the polynomials space in request in order to have the scheme numerically stable. In some concrete cases, the rate of growth of the Clenshaw sums is estimated. A most favorable rate of growth can be observed if the scheme is based on multivariate Cebyshev polynomials of the second kind.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 20:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遵义县| 武汉市| 监利县| 馆陶县| 吉水县| 北川| 贵州省| 城市| 连云港市| 虎林市| 延津县| 驻马店市| 温宿县| 定襄县| 太原市| 中阳县| 中卫市| 苗栗市| 左云县| 纳雍县| 洛阳市| 温泉县| 武功县| 定陶县| 大化| 施甸县| 塔河县| 楚雄市| 商城县| 甘泉县| 武平县| 西昌市| 玉屏| 太原市| 平遥县| 土默特右旗| 麦盖提县| 石狮市| 陕西省| 西宁市| 达拉特旗|