找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Constructive Theory of Functions of Several Variables; Proceedings of a Con Walter Schempp,Karl Zeller Conference proceedings 1977 Springer

[復(fù)制鏈接]
樓主: 驅(qū)逐
11#
發(fā)表于 2025-3-23 10:21:52 | 只看該作者
12#
發(fā)表于 2025-3-23 15:41:10 | 只看該作者
13#
發(fā)表于 2025-3-23 18:03:00 | 只看該作者
14#
發(fā)表于 2025-3-24 02:04:56 | 只看該作者
Splines minimizing rotation-invariant semi-norms in Sobolev spaces,plines in one dimension. In general, data functionals are only supposed to be distributions with compact supports, belonging to H.(?.); there may be infinitely many of them. Splines are then expressed as convolutions μ . |t|. (or μ . |t|. Log |t|) + polynomials.
15#
發(fā)表于 2025-3-24 05:40:00 | 只看該作者
https://doi.org/10.1007/BFb0086559Invariant; Konstruktive Funktionentheorie; Manifold; Several Variables; Variables; convolution; function; t
16#
發(fā)表于 2025-3-24 09:47:31 | 只看該作者
17#
發(fā)表于 2025-3-24 12:26:51 | 只看該作者
Constructive Theory of Functions of Several Variables978-3-540-37496-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
18#
發(fā)表于 2025-3-24 15:21:26 | 只看該作者
0075-8434 Overview: 978-3-540-08069-5978-3-540-37496-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
19#
發(fā)表于 2025-3-24 22:23:30 | 只看該作者
Richard Willst?tter,Arthur Stollpecial ideals a n-dimensional generalization of Max Noether‘s theorem is obtained. This generalization enables us to answer questions arising in the constructive theory of functions as it is shown by three examples.
20#
發(fā)表于 2025-3-25 00:23:45 | 只看該作者
Untersuchung der Farbstoffgemische,h the dimension of the polynomials space in request in order to have the scheme numerically stable. In some concrete cases, the rate of growth of the Clenshaw sums is estimated. A most favorable rate of growth can be observed if the scheme is based on multivariate Cebyshev polynomials of the second kind.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芦溪县| 上栗县| 荃湾区| 冷水江市| 万源市| 偃师市| 黄冈市| 中牟县| 德钦县| 北京市| 郸城县| 昌黎县| 东阳市| 石首市| 遵义市| 钦州市| 聂拉木县| 青铜峡市| 石林| 德令哈市| 镇平县| 陇西县| 泌阳县| 丹江口市| 西藏| 石楼县| 吉水县| 洞口县| 武陟县| 法库县| 静乐县| 神木县| 莱州市| 阿拉善右旗| 广昌县| 德惠市| 西林县| 麻栗坡县| 五台县| 延寿县| 息烽县|