找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Constructive Methods of Wiener-Hopf Factorization; I. Gohberg,M. A. Kaashoek Book 1986 Birkh?user Verlag Basel 1986 Eigenvalue.matrices.ma

[復(fù)制鏈接]
樓主: 漏出
31#
發(fā)表于 2025-3-26 22:46:09 | 只看該作者
32#
發(fā)表于 2025-3-27 02:02:51 | 只看該作者
33#
發(fā)表于 2025-3-27 06:17:52 | 只看該作者
https://doi.org/10.1007/978-3-642-02460-3ctorization consider the matrix-valued function . where k is an m × m matrix function of which the entries are in L. (-∞,∞) and I is the m × m identity matrix. A . of W relative to the real line is a multiplicative decomposition: . in which the factors W. and W. are of the form . where k. and k. are
34#
發(fā)表于 2025-3-27 10:59:55 | 只看該作者
35#
發(fā)表于 2025-3-27 17:25:54 | 只看該作者
Accessing User Information for Use in Design operators with symbols defined on a curve composed of several non-intersecting simple closed contours. Also criteria and explicit formulas for canonical factorization of matrix functions relative to a compound contour are presented. The matrix functions we work with are rational on each of the comp
36#
發(fā)表于 2025-3-27 18:40:19 | 只看該作者
https://doi.org/10.1007/978-3-642-02707-9torization is introduced, and all possible factorizations of this type are described in terms of realizations of the symbol and certain supporting projections. With each canonical pseudo-spectral factorization is related a pseudo-resolvent kernel, which satisfies the resolvent identities and is used
37#
發(fā)表于 2025-3-27 22:06:00 | 只看該作者
38#
發(fā)表于 2025-3-28 02:20:12 | 只看該作者
Left Versus Right Canonical Wiener-Hopf Factorizationl Wiener-Hopf factorization. Formulas for the factors in a right factorization are given in terms of the formulas for the factors in a given left factorization. Both symmetric and nonsymmetric factorizations are discussed.
39#
發(fā)表于 2025-3-28 09:21:39 | 只看該作者
40#
發(fā)表于 2025-3-28 12:02:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 14:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
克什克腾旗| 永康市| 双辽市| 龙江县| 无为县| 逊克县| 满洲里市| 安丘市| 玉龙| 榆林市| 桃园市| 二连浩特市| 五家渠市| 富裕县| 浦县| 乌鲁木齐县| 清丰县| 新兴县| 雷州市| 舞阳县| 三明市| 舞阳县| 历史| 邳州市| 吉水县| 江陵县| 石渠县| 中宁县| 云阳县| 洛浦县| 晋中市| 东城区| 楚雄市| 隆昌县| 荣昌县| 会同县| 岳阳县| 华容县| 贵溪市| 南岸区| 襄垣县|