找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Constructive Fractional Analysis with Applications; George A. Anastassiou Book 2021 The Editor(s) (if applicable) and The Author(s), under

[復制鏈接]
樓主: VERSE
41#
發(fā)表于 2025-3-28 17:09:24 | 只看該作者
42#
發(fā)表于 2025-3-28 19:56:46 | 只看該作者
Multidimensional Right Caputo Fractional Taylor Formula and Landau Inequalities,Here we present a multivariate right side Caputo fractional Taylor’s formula with fractional integral remainder. Based on this we give three multivariate right side Caputo fractional Landau’s type inequalities. Their constants are precisely calculated and we give best upper bounds. It follows [.].
43#
發(fā)表于 2025-3-29 02:25:20 | 只看該作者
44#
發(fā)表于 2025-3-29 06:17:32 | 只看該作者
Fractional Variable Order Gronwall Inequality,This chapter presents the first generalized fractional variable order Gronwall inequality. It follows [.].
45#
發(fā)表于 2025-3-29 10:45:46 | 只看該作者
46#
發(fā)表于 2025-3-29 11:34:40 | 只看該作者
47#
發(fā)表于 2025-3-29 19:17:04 | 只看該作者
Springer Tracts in Advanced Roboticsproduce general reverse and direct integral inequalities. We apply these to ordinary and left fractional integral inequalities. The last involve ordinary derivatives, left Riemann–Liouville fractional integrals, left Caputo fractional derivatives, and left generalized fractional derivatives.
48#
發(fā)表于 2025-3-29 21:26:15 | 只看該作者
Grasp Stability of Underactuated Fingers,ply these to ordinary and right side fractional integral inequalities. The last involves ordinary derivatives, right side Riemann–Liouville fractional integrals, right side Caputo fractional derivatives, and right side generalized fractional derivatives.
49#
發(fā)表于 2025-3-30 03:42:27 | 只看該作者
Lecture Notes in Computer Scienceimate lower order fractional derivatives. These inequalities are sharp or nearly sharp with completely determined constants. We give applications when .. We finish with a related new Ostrowski like inequality for ., . It follows [.].
50#
發(fā)表于 2025-3-30 05:50:40 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-20 14:28
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
贵溪市| 高阳县| 徐水县| 石景山区| 赤壁市| 禹州市| 宁乡县| 天津市| 漳州市| 峨山| 治县。| 青浦区| 平乐县| 绥德县| 遂平县| 楚雄市| 东宁县| 长汀县| 新安县| 邵阳县| 惠东县| 巴塘县| 赞皇县| 抚顺市| 余干县| 桐乡市| 方正县| 化隆| 遵义市| 武隆县| 延津县| 讷河市| 墨竹工卡县| 广南县| 东源县| 嘉义县| 金溪县| 个旧市| 前郭尔| 郎溪县| 鄂温|