找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Constructive Fractional Analysis with Applications; George A. Anastassiou Book 2021 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: VERSE
41#
發(fā)表于 2025-3-28 17:09:24 | 只看該作者
42#
發(fā)表于 2025-3-28 19:56:46 | 只看該作者
Multidimensional Right Caputo Fractional Taylor Formula and Landau Inequalities,Here we present a multivariate right side Caputo fractional Taylor’s formula with fractional integral remainder. Based on this we give three multivariate right side Caputo fractional Landau’s type inequalities. Their constants are precisely calculated and we give best upper bounds. It follows [.].
43#
發(fā)表于 2025-3-29 02:25:20 | 只看該作者
44#
發(fā)表于 2025-3-29 06:17:32 | 只看該作者
Fractional Variable Order Gronwall Inequality,This chapter presents the first generalized fractional variable order Gronwall inequality. It follows [.].
45#
發(fā)表于 2025-3-29 10:45:46 | 只看該作者
46#
發(fā)表于 2025-3-29 11:34:40 | 只看該作者
47#
發(fā)表于 2025-3-29 19:17:04 | 只看該作者
Springer Tracts in Advanced Roboticsproduce general reverse and direct integral inequalities. We apply these to ordinary and left fractional integral inequalities. The last involve ordinary derivatives, left Riemann–Liouville fractional integrals, left Caputo fractional derivatives, and left generalized fractional derivatives.
48#
發(fā)表于 2025-3-29 21:26:15 | 只看該作者
Grasp Stability of Underactuated Fingers,ply these to ordinary and right side fractional integral inequalities. The last involves ordinary derivatives, right side Riemann–Liouville fractional integrals, right side Caputo fractional derivatives, and right side generalized fractional derivatives.
49#
發(fā)表于 2025-3-30 03:42:27 | 只看該作者
Lecture Notes in Computer Scienceimate lower order fractional derivatives. These inequalities are sharp or nearly sharp with completely determined constants. We give applications when .. We finish with a related new Ostrowski like inequality for ., . It follows [.].
50#
發(fā)表于 2025-3-30 05:50:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 17:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白城市| 和平县| 沂水县| 滦平县| 松阳县| 商丘市| 渑池县| 闽侯县| 金山区| 汪清县| 泾源县| 乌兰察布市| 吉林省| 盐池县| 慈溪市| 时尚| 古蔺县| 北海市| 濮阳市| 平安县| 唐河县| 三穗县| 东阿县| 尼玛县| 乡宁县| 扶绥县| 海兴县| 阳高县| 大英县| 巴林左旗| 连江县| 洞口县| 乡城县| 长阳| 凯里市| 六盘水市| 恭城| 农安县| 濮阳县| 上高县| 炉霍县|