找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Construction of Mappings for Hamiltonian Systems and Their Applications; Sadrilla S. Abdullaev Book 2006 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: 縮寫
11#
發(fā)表于 2025-3-23 13:00:37 | 只看該作者
Die Gewissheit unsicherer Zeitenperturbation of the integrable system. To study perturbed systems special theoretical methods, known as ., have been developed. They are based on the assumption that the solutions of a perturbed system are close to the corresponding solutions of the unperturbed (integrable) system, and one seeks the
12#
發(fā)表于 2025-3-23 15:14:30 | 只看該作者
Die Gewissheit unsicherer Zeiten preface mappings significantly simplify the study of systems, by reducing the dimension of the system by one, visualizing the orbits on certain sections of phase space, and thus simplifying the formulation of many concepts of dynamical systems. In this chapter we review the traditional methods to c
13#
發(fā)表于 2025-3-23 19:12:21 | 只看該作者
Die Gewissheit unsicherer Zeitensystems affected by perturbations. The method is based on the Hamilton–Jacobi method for integrating Hamiltonian equations and Jacobi’s theorem recalled in Sect. 1.2.2. As we have seen there the idea of the Hamilton–Jacobi method consists of finding such a canonical change of variables which reduces
14#
發(fā)表于 2025-3-24 01:56:11 | 只看該作者
https://doi.org/10.1007/978-3-531-92140-2any small time-periodic perturbation splits the separatrices corresponding to stable and unstable manifolds which leads to the onset of chaotic motion due to the exponential divergence of orbits with close initial conditions. This phenomenon creates the zone of phase space in the small vicinity of t
15#
發(fā)表于 2025-3-24 03:27:53 | 只看該作者
https://doi.org/10.1007/978-3-531-92140-2clude a motion in a double–well potential, dynamics of the periodicallydriven oscillator. We consider also the dynamics of particles near the separatrix of long–range potential field. These problems are a motion of particle in a periodically–driven Morse potential and the Kepler problem.
16#
發(fā)表于 2025-3-24 07:58:19 | 只看該作者
Klaus-Ove Kahrmann,Peter Bendixeniltonian systems in which a so-called . is violated. Particular example of these system is a one–degree-of-freedom system with a non-monotonic dependence of the frequency of oscillations on action variable. The second problem is a study of systems subjected to non-smooth perturbations. These problem
17#
發(fā)表于 2025-3-24 13:42:14 | 只看該作者
Klaus-Ove Kahrmann,Peter Bendixen It forms a stochastic layer, a zone, of chaotically unstable motion near the unperturbed separatrix. In this section we study important properties of the stochastic layer, namely, a rescaling invariance of phase space of systems near the saddle points. This property of motion is generic for typical
18#
發(fā)表于 2025-3-24 15:40:15 | 只看該作者
Ungleiche Netzwerke - Vernetzte Ungleichheitdevices in a quest for the controlled fusion.. Actually, a fusion research in early sixties gave a huge impact on the development of Hamiltonian dynamics, particularly, on mapping methods. Since, particles predominantly follow magnetic field lines the determination of their structure is important to
19#
發(fā)表于 2025-3-24 21:27:07 | 只看該作者
Ungleiche Netzwerke - Vernetzte Ungleichheitic field lines in so-called ergodic and poloidal divertor tokamaks using mappings. We shall study the general structure of magnetic field, chaotic and statistical properties of field lines in ergodic divertor tokamaks. Mappings constitute an important and computationally efficient tool to study magn
20#
發(fā)表于 2025-3-25 02:02:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
炉霍县| 郴州市| 昌吉市| 神木县| 绥棱县| 华阴市| 锦州市| 彰化县| 龙岩市| 大厂| 青州市| 柳河县| 宝清县| 晋州市| 随州市| 鄂托克旗| 犍为县| 北京市| 沂水县| 大渡口区| 固镇县| 建德市| 灵川县| 玉田县| 潜山县| 上高县| 深圳市| 根河市| 界首市| 嘉定区| 巴东县| 甘肃省| 任丘市| 木兰县| 浙江省| 昔阳县| 浮山县| 奉贤区| 元氏县| 子长县| 汉沽区|