找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Construction and Analysis of Cryptographic Functions; Lilya Budaghyan Book 2014 Springer International Publishing Switzerland 2014 Almost

[復制鏈接]
樓主: 尖酸好
11#
發(fā)表于 2025-3-23 12:49:29 | 只看該作者
,Kenntafeln für Antriebsverh?ltnisse,In this chapter we present several methods for construction of APN functions. Using these methods we construct 7 out of 11 known infinite families of quadratic APN polynomials CCZ-inequivalent to power functions, 4 of which are also AB when . is odd.
12#
發(fā)表于 2025-3-23 17:24:25 | 只看該作者
Introduction,In this chapter we give a short description of all the results presented in this monograph.
13#
發(fā)表于 2025-3-23 19:47:13 | 只看該作者
Generalities,In this chapter we present all necessary definitions and preliminary results on cryptographic functions which are used throughout this book.
14#
發(fā)表于 2025-3-24 01:31:58 | 只看該作者
Equivalence Relations of Functions,In this chapter we determine the cases where CCZ-equivalence coincide with EA-equivalence and where it is not, in particular, single and multioutput functions, bent functions, known power APN functions. We also study a possible extension of CCZ-equivalence.
15#
發(fā)表于 2025-3-24 05:22:18 | 只看該作者
New Classes of APN and AB Polynomials,In this chapter we present several methods for construction of APN functions. Using these methods we construct 7 out of 11 known infinite families of quadratic APN polynomials CCZ-inequivalent to power functions, 4 of which are also AB when . is odd.
16#
發(fā)表于 2025-3-24 08:53:08 | 只看該作者
17#
發(fā)表于 2025-3-24 13:49:33 | 只看該作者
18#
發(fā)表于 2025-3-24 15:45:57 | 只看該作者
19#
發(fā)表于 2025-3-24 21:31:24 | 只看該作者
20#
發(fā)表于 2025-3-25 01:40:47 | 只看該作者
Beispiele zur Kenntafelermittlung, functions via Boolean functions, and a longstanding problem introduced by Dillon in 1974 about relation between two classes of bent functions..Further we prove that many of the known classes of generalized bent functions do not intersect with the completed class of Maiorana-McFarland bent functions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
成安县| 江城| 泰顺县| 泸定县| 闵行区| 鹿邑县| 玛纳斯县| 丹阳市| 淮安市| 沁源县| 昌平区| 南京市| 外汇| 离岛区| 甘孜县| 浮山县| 宜君县| 固始县| 辽宁省| 本溪| 定结县| 徐闻县| 鲜城| 砚山县| 望奎县| 施甸县| 乌苏市| 游戏| 大同县| 始兴县| 麻栗坡县| 玉屏| 通渭县| 台湾省| 娄烦县| 太原市| 安溪县| 图们市| 信丰县| 朝阳市| 阜新市|