找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Construction Analytics; Forecasting and Inve Mohsen Shahandashti,Bahram Abediniangerabi,Sooin K Textbook 2023 The Editor(s) (if applicable)

[復(fù)制鏈接]
查看: 51451|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:42:12 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Construction Analytics
副標(biāo)題Forecasting and Inve
編輯Mohsen Shahandashti,Bahram Abediniangerabi,Sooin K
視頻videohttp://file.papertrans.cn/237/236040/236040.mp4
概述Illustrates theoretical explanations of construction analytics, hands-on practices, and R codes for analytics techniques.Enables readers to investigate the problems in the construction industry such a
圖書封面Titlebook: Construction Analytics; Forecasting and Inve Mohsen Shahandashti,Bahram Abediniangerabi,Sooin K Textbook 2023 The Editor(s) (if applicable)
描述This text covers R program coding for the implementation of two essential data analytics for practical construction problems. The first part of this book explains time series basics, models, and forecasting approaches in the context of the construction industry, accompanied by practical examples in construction. The second part describes the concept of investment valuation for construction projects and provides both deterministic and probabilistic techniques to conduct investment valuation on construction projects. R code scripts are provided in this book for solving practical problems in the construction industry. This book is also equipped with an R Package entitled “cdar” to provide the necessary functions for performing investment valuation. The book maximizes students’ understanding of the necessary theoretical background of data analytics, and explains the implementation of data analytics techniques to solve the actual problems in the construction industry.?.?..
出版日期Textbook 2023
關(guān)鍵詞Construction Analytics; Construction Forecasting; Construction Investment Valuation; Construction Manag
版次1
doihttps://doi.org/10.1007/978-3-031-27292-9
isbn_softcover978-3-031-27294-3
isbn_ebook978-3-031-27292-9
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Construction Analytics影響因子(影響力)




書目名稱Construction Analytics影響因子(影響力)學(xué)科排名




書目名稱Construction Analytics網(wǎng)絡(luò)公開度




書目名稱Construction Analytics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Construction Analytics被引頻次




書目名稱Construction Analytics被引頻次學(xué)科排名




書目名稱Construction Analytics年度引用




書目名稱Construction Analytics年度引用學(xué)科排名




書目名稱Construction Analytics讀者反饋




書目名稱Construction Analytics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:59:04 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:41:00 | 只看該作者
Mohsen Shahandashti,Bahram Abediniangerabi,Sooin KIllustrates theoretical explanations of construction analytics, hands-on practices, and R codes for analytics techniques.Enables readers to investigate the problems in the construction industry such a
地板
發(fā)表于 2025-3-22 07:11:09 | 只看該作者
http://image.papertrans.cn/c/image/236040.jpg
5#
發(fā)表于 2025-3-22 11:30:12 | 只看該作者
https://doi.org/10.1007/978-3-322-88550-0nhance construction productivity, and reduce construction cost overruns. Although data analytics have tremendous potential to improve strategic decision-making in the construction industry as an ever-increasing volume of data becomes available, it has not been fully exploited on a larger scale in th
6#
發(fā)表于 2025-3-22 15:51:06 | 只看該作者
7#
發(fā)表于 2025-3-22 18:30:18 | 只看該作者
https://doi.org/10.1007/978-3-322-88557-9struction time series data have not shown a constant variance. The volatility of a construction time series variable over time is challenging for accurate forecasting and risk management. This chapter discusses two time series volatility models (i.e., ARCH and GARCH) to forecast the variance of a co
8#
發(fā)表于 2025-3-22 22:22:36 | 只看該作者
https://doi.org/10.1007/978-3-322-88557-9ls. This chapter explains the process of identifying the leading indicators of a construction time series and developing proper multivariate models, such as vector error correction and vector autoregressive models for forecasting them. Several practical examples are provided along with R codes to sh
9#
發(fā)表于 2025-3-23 02:17:34 | 只看該作者
10#
發(fā)表于 2025-3-23 06:11:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 20:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湖南省| 东莞市| 交城县| 临武县| 安仁县| 普兰县| 奉贤区| 平南县| 张北县| 灵璧县| 大港区| 左权县| 嘉善县| 沧州市| 万源市| 收藏| 衢州市| 瑞安市| 英山县| 嘉鱼县| 宁波市| 鹤壁市| 石门县| 邯郸市| 龙里县| 哈巴河县| 澄迈县| 宜都市| 峨边| 黑龙江省| 化隆| 冷水江市| 蕲春县| 农安县| 禹州市| 城口县| 江西省| 玛曲县| 油尖旺区| 沾益县| 寿阳县|