找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Constructible Sets in Real Geometry; Carlos Andradas,Ludwig Br?cker,Jesús M. Ruiz Book 1996 Springer-Verlag Berlin Heidelberg 1996 Dimensi

[復(fù)制鏈接]
查看: 36339|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:42:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Constructible Sets in Real Geometry
編輯Carlos Andradas,Ludwig Br?cker,Jesús M. Ruiz
視頻videohttp://file.papertrans.cn/236/235961/235961.mp4
叢書名稱Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemati
圖書封面Titlebook: Constructible Sets in Real Geometry;  Carlos Andradas,Ludwig Br?cker,Jesús M. Ruiz Book 1996 Springer-Verlag Berlin Heidelberg 1996 Dimensi
出版日期Book 1996
關(guān)鍵詞Dimension; Divisor; Grad; Reelle Spektren; Space of signs; Stabilit?tsindex; algebraic geometry; constructi
版次1
doihttps://doi.org/10.1007/978-3-642-80024-5
isbn_softcover978-3-642-80026-9
isbn_ebook978-3-642-80024-5Series ISSN 0071-1136 Series E-ISSN 2197-5655
issn_series 0071-1136
copyrightSpringer-Verlag Berlin Heidelberg 1996
The information of publication is updating

書目名稱Constructible Sets in Real Geometry影響因子(影響力)




書目名稱Constructible Sets in Real Geometry影響因子(影響力)學(xué)科排名




書目名稱Constructible Sets in Real Geometry網(wǎng)絡(luò)公開度




書目名稱Constructible Sets in Real Geometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Constructible Sets in Real Geometry被引頻次




書目名稱Constructible Sets in Real Geometry被引頻次學(xué)科排名




書目名稱Constructible Sets in Real Geometry年度引用




書目名稱Constructible Sets in Real Geometry年度引用學(xué)科排名




書目名稱Constructible Sets in Real Geometry讀者反饋




書目名稱Constructible Sets in Real Geometry讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:32:31 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:43:23 | 只看該作者
地板
發(fā)表于 2025-3-22 08:32:55 | 只看該作者
5#
發(fā)表于 2025-3-22 10:02:11 | 只看該作者
Spaces of Signs,ection 5 to show that the real space associated to a commutative ring with unit is actually a space of signs, and also in Section 6, to prove that the subspaces of a space of signs are again spaces of signs.
6#
發(fā)表于 2025-3-22 13:33:00 | 只看該作者
The Main Results, and regularity in .. Using them we can bound from below . and $ar s$. Moreover, we compare basicness of an open set and its closure, resp. of a closed set and its interior. Finally, Artin-Lang spaces are introduced in Section 5, jointly with the tilde operator: this is the notion that makes the abstract theory fruitful of geometric applications.
7#
發(fā)表于 2025-3-22 20:21:07 | 只看該作者
Real Analytic Geometry,ous rings of . analytic functions that will be used in the sequel. Sections 5 to 7 are devoted to the Artin-Lang property, the complexity and the constructibility of topological operations. This is the concrete reward for all preceding abstract work. In Section 8 we put it all together for the nicest case, that of ..
8#
發(fā)表于 2025-3-23 01:00:19 | 只看該作者
9#
發(fā)表于 2025-3-23 03:04:26 | 只看該作者
A First Look at Semialgebraic Geometry,real spectra of rings and spaces of orderings of fields. This book deals with the relations between these. However, in Section 4 we first look at typical examples and illustrations in the semialgebraic situation. So this section is mostly recommended for motivation.
10#
發(fā)表于 2025-3-23 09:28:23 | 只看該作者
Methodology: Mixed-Methods Research Design,ous rings of . analytic functions that will be used in the sequel. Sections 5 to 7 are devoted to the Artin-Lang property, the complexity and the constructibility of topological operations. This is the concrete reward for all preceding abstract work. In Section 8 we put it all together for the nicest case, that of ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石城县| 永兴县| 新郑市| 施甸县| 耒阳市| 香港| 阳泉市| 邛崃市| 万盛区| 峨眉山市| 遂溪县| 宜州市| 盐源县| 栾川县| 汉川市| 白玉县| 华安县| 阿城市| 广平县| 攀枝花市| 酉阳| 韩城市| 虎林市| 阳春市| 卢龙县| 重庆市| 南平市| 囊谦县| 三亚市| 固原市| 乳源| 永定县| 恩施市| 长顺县| 桂平市| 万源市| 嘉禾县| 墨脱县| 革吉县| 于田县| 万源市|