找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Constrained Optimization and Optimal Control for Partial Differential Equations; Günter Leugering,Sebastian Engell,Stefan Ulbrich Book 201

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:13:13 | 只看該作者
12#
發(fā)表于 2025-3-23 16:58:48 | 只看該作者
Stabilization of Incompressible Flow Problems by Riccati-based Feedbacklem. For this purpose, algorithmic advances in solving the associated algebraic Riccati equations are needed and investigated here. The computational complexity of the new algorithms is essentially proportional to the simulation of the forward problem.
13#
發(fā)表于 2025-3-23 21:30:47 | 只看該作者
14#
發(fā)表于 2025-3-24 01:33:18 | 只看該作者
15#
發(fā)表于 2025-3-24 04:27:19 | 只看該作者
16#
發(fā)表于 2025-3-24 08:18:13 | 只看該作者
https://doi.org/10.1007/978-3-211-75784-0ing from finite element discretizations in space are solved with the help of a primal-dual active set approach. We show several numerical computations also involving systems of parabolic variational inequalities.
17#
發(fā)表于 2025-3-24 10:55:24 | 只看該作者
Measuring Ultrashort Optical Pulses,nd ill-posed formulations. A nonlinear Ritz-Galerkin method is applied for the discretization of the shape optimization problem. In case of well-posedness existence and convergence of the approximate shapes is proven. In combination with a fast boundary element method efficient first and second-order shape optimization algorithms are obtained.
18#
發(fā)表于 2025-3-24 18:47:09 | 只看該作者
19#
發(fā)表于 2025-3-24 22:33:44 | 只看該作者
https://doi.org/10.1007/978-3-211-75784-0unction, we discuss in detail the choice of an appropriate control or design space preconditioner, discuss implementation issues and present a convergence analysis. We show numerical examples, among them applications from shape design in fluid mechanics and parameter optimization in a climate model.
20#
發(fā)表于 2025-3-25 01:55:42 | 只看該作者
Automated Extension of Fixed Point PDE Solvers for Optimal Design with Bounded Retardationunction, we discuss in detail the choice of an appropriate control or design space preconditioner, discuss implementation issues and present a convergence analysis. We show numerical examples, among them applications from shape design in fluid mechanics and parameter optimization in a climate model.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿鲁科尔沁旗| 株洲市| 新沂市| 普安县| 曲阳县| 桦南县| 宜城市| 永新县| 饶河县| 潞城市| 海林市| 沙河市| 宁晋县| 百色市| 黑龙江省| 武安市| 嘉义县| 漳浦县| 林甸县| 儋州市| 进贤县| 丹阳市| 延长县| 大冶市| 鄂伦春自治旗| 安福县| 南充市| 伊金霍洛旗| 昌平区| 茶陵县| 佛山市| 交口县| 肇州县| 辽中县| 万全县| 金沙县| 昌黎县| 静安区| 盱眙县| 双牌县| 奎屯市|