找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Connectomics in NeuroImaging; First International Guorong Wu,Paul Laurienti,Brent C. Munsell Conference proceedings 2017 Springer Internat

[復制鏈接]
樓主: 厭氧
31#
發(fā)表于 2025-3-26 22:04:03 | 只看該作者
32#
發(fā)表于 2025-3-27 03:32:14 | 只看該作者
33#
發(fā)表于 2025-3-27 08:36:29 | 只看該作者
Topological Network Analysis of Electroencephalographic Power Maps, model the spatial distribution of an EEG topographic power map via its dynamic local connectivity with respect to a changing scale. We compare topological features of the network filtrations between long-term meditators and mediation-na?ve practitioners to investigate if long-term meditation practice changes power patterns in the brain.
34#
發(fā)表于 2025-3-27 11:05:43 | 只看該作者
Topological Distances Between Brain Networks,in persistent homology based brain network models. The superior performance of KS-distance is contrasted against matrix norms and GH-distance in random network simulations with the ground truths. The KS-distance is then applied in characterizing the multimodal MRI and DTI study of maltreated children.
35#
發(fā)表于 2025-3-27 17:24:21 | 只看該作者
36#
發(fā)表于 2025-3-27 21:34:31 | 只看該作者
37#
發(fā)表于 2025-3-27 23:35:19 | 只看該作者
https://doi.org/10.1007/0-8176-4465-2 controls from Schizophrenia patients. The new kernel offers superior classification accuracy to previous kernels, and the adjusted eigenvalues allow discovery of clinically meaningful differences in connectivity between patients and controls.
38#
發(fā)表于 2025-3-28 02:14:14 | 只看該作者
https://doi.org/10.1007/0-8176-4465-2propose a ., which projects each pair of brain multiplex sets onto a low-dimensional space where they are fused, then classified. Our framework achieved the best classification results for the right hemisphere 90.8% and the left hemisphere 89.5%.
39#
發(fā)表于 2025-3-28 07:55:19 | 只看該作者
40#
發(fā)表于 2025-3-28 11:06:25 | 只看該作者
Discriminative Log-Euclidean Kernels for Learning on Brain Networks, controls from Schizophrenia patients. The new kernel offers superior classification accuracy to previous kernels, and the adjusted eigenvalues allow discovery of clinically meaningful differences in connectivity between patients and controls.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 12:06
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
慈利县| 淳化县| 镇远县| 会同县| 福清市| 秀山| 贵州省| 郴州市| 南投市| 龙海市| 广平县| 木兰县| 巩义市| 清远市| 文安县| 苍梧县| 金川县| 和田县| 玉田县| 博客| 遵化市| 山阳县| 奉贤区| 扬中市| 浏阳市| 独山县| 大名县| 黔江区| 南陵县| 准格尔旗| 黄平县| 肇源县| 达拉特旗| 富民县| 石景山区| 陇南市| 讷河市| 临沭县| 崇信县| 长岭县| 沾益县|