找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Connectomics in NeuroImaging; Second International Guorong Wu,Islem Rekik,Brent Munsell Conference proceedings 2018 Springer Nature Switzer

[復制鏈接]
樓主: 惡化
31#
發(fā)表于 2025-3-26 22:54:28 | 只看該作者
32#
發(fā)表于 2025-3-27 01:38:02 | 只看該作者
33#
發(fā)表于 2025-3-27 09:08:11 | 只看該作者
34#
發(fā)表于 2025-3-27 12:06:55 | 只看該作者
Conference proceedings 2018s deal with?new advancements in network construction, analysis, and visualization techniques in connectomics and their use in clinical diagnosis and group comparison studies as well as in various neuroimaging applications..
35#
發(fā)表于 2025-3-27 16:40:20 | 只看該作者
36#
發(fā)表于 2025-3-27 21:15:19 | 只看該作者
37#
發(fā)表于 2025-3-27 22:37:34 | 只看該作者
FOD-Based Registration for Susceptibility Distortion Correction in Connectome Imaging, of human brain pathways. It was recently noted, however, that significant distortions remain present in the data of most subjects preprocessed by the HCP-Pipeline, which have been widely distributed and used extensively in connectomics research. Fundamentally this is caused by the reliance of the H
38#
發(fā)表于 2025-3-28 02:27:29 | 只看該作者
GIFE: Efficient and Robust Group-Wise Isometric Fiber Embedding, We previously propose the Group-w.se Tractogram Analysis (GiTA) framework for identifying anatomically valid fibers across subjects according to cross-subject consistency. However, the original framework is based on computationally expensive brute-force KNN search. In this work, we propose a more g
39#
發(fā)表于 2025-3-28 09:00:21 | 只看該作者
Multi-modal Brain Tensor Factorization: Preliminary Results with AD Patients,, the variability in connectivity definitions poses a challenge. We propose to represent multi-modal brain networks over a population with a single 4D brain tensor (.) and factorize . to get a lower dimensional representation per case and per modality. We used 7 known functional networks as the cano
40#
發(fā)表于 2025-3-28 11:32:08 | 只看該作者
Intact Connectional Morphometricity Learning Using Multi-view Morphological Brain Networks with App identifying the morphological signature of a specific brain disorder can improve diagnosis and better explain how neuroanatomical changes associate with function and cognition. To capture this signature, a landmark study introduced, brain ., a global metric defined as the proportion of phenotypic v
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 09:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
汉阴县| 木兰县| 安达市| 临高县| 京山县| 信宜市| 乐山市| 阜城县| 德昌县| 弥勒县| 汶川县| 临武县| 孝感市| 七台河市| 黑龙江省| 延吉市| 淮南市| 泗阳县| 金秀| 杭锦旗| 宜兰市| 黎平县| 绍兴市| 旬阳县| 曲阜市| 维西| 固始县| 政和县| 惠州市| 正宁县| 蓬莱市| 若羌县| 株洲县| 托克逊县| 上思县| 西畴县| 徐水县| 芜湖县| 山东省| 临澧县| 天台县|