找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing; Stefan Wermter,Ellen Riloff,Gabriele Schel

[復(fù)制鏈接]
樓主: FETID
31#
發(fā)表于 2025-3-26 22:29:24 | 只看該作者
32#
發(fā)表于 2025-3-27 02:04:54 | 只看該作者
33#
發(fā)表于 2025-3-27 08:52:44 | 只看該作者
0302-9743 the state of the art in the most promising current approaches to learning for NLP and is thus compulsory reading for researchers in the field or for anyone applying the new techniques to challenging real-world NLP problems.978-3-540-60925-4978-3-540-49738-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
34#
發(fā)表于 2025-3-27 10:51:50 | 只看該作者
35#
發(fā)表于 2025-3-27 15:51:30 | 只看該作者
36#
發(fā)表于 2025-3-27 18:23:52 | 只看該作者
Turbulent Shear Layers in Supersonic Flowl class. This method does not depend on any specific grammar or set of semantical categories, so it can be used on (almost) any existing system. We present experimental results that show our method gives a considerable improvement over regular stochastic grammars.
37#
發(fā)表于 2025-3-27 23:09:22 | 只看該作者
https://doi.org/10.1007/3-540-33591-9he accuracy of the statistical method remains 10% below the performance of human experts. This suggests a limit on what can be learned automatically from text, and points to the need to combine machine learning with human expertise.
38#
發(fā)表于 2025-3-28 04:15:36 | 只看該作者
Lecture Notes in Computer Sciencel natural language processing. We report experimental results of applying a specific type of committee-based selection during training of a stochastic part-of-speech tagger, and demonstrate substantially improved learning rates over complete training using all of the text.
39#
發(fā)表于 2025-3-28 10:12:19 | 只看該作者
Separating learning and representation,ed the potential to correctly recognise embeddings of any length. These findings illustrate the benefits of the study of representation, which can provide a basis for the development of novel learning rules.
40#
發(fā)表于 2025-3-28 14:18:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 17:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
民勤县| 淮北市| 湾仔区| 唐山市| 清徐县| 清原| 桐柏县| 天柱县| 双牌县| 辛集市| 大新县| 西贡区| 满洲里市| 东乡| 赫章县| 海林市| 荥经县| 岚皋县| 彰武县| 五指山市| 松原市| 确山县| 盐津县| 平罗县| 寿阳县| 滕州市| 资兴市| 秦安县| 德昌县| 白银市| 高阳县| 蚌埠市| 兴国县| 灌阳县| 临武县| 滨海县| 霞浦县| 渝北区| 武威市| 祁东县| 弋阳县|