找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Connecting with Computability; 17th Conference on C Liesbeth De Mol,Andreas Weiermann,David Fernández- Conference proceedings 2021 Springer

[復(fù)制鏈接]
樓主: foresight
31#
發(fā)表于 2025-3-26 22:28:49 | 只看該作者
32#
發(fā)表于 2025-3-27 02:25:47 | 只看該作者
33#
發(fā)表于 2025-3-27 07:19:31 | 只看該作者
34#
發(fā)表于 2025-3-27 09:45:58 | 只看該作者
Learning Languages with Decidable Hypotheses,ip problem is undecidable. In this paper, we use a different system which allows for naming arbitrary decidable languages, namely . (called .-indices). These indices have the drawback that it is now not decidable whether a given hypothesis is even a legal .-index..In this first analysis of learning
35#
發(fā)表于 2025-3-27 13:50:26 | 只看該作者
36#
發(fā)表于 2025-3-27 19:03:45 | 只看該作者
37#
發(fā)表于 2025-3-27 23:16:40 | 只看該作者
38#
發(fā)表于 2025-3-28 05:32:41 | 只看該作者
The Lost Melody Theorem for Infinite Time Blum-Shub-Smale Machines,ticular, we show that the lost melody theorem (originally proved for ITTMs by Hamkins and Lewis), i.e. the existence of non-computable, but recognizable real numbers, holds for ITBMs, that ITBM-recognizable real numbers are hyperarithmetic and that both ITBM-recognizable and ITBM-unrecognizable real
39#
發(fā)表于 2025-3-28 08:33:02 | 只看該作者
Randomising Realizability,sed computability with positive probability. In particular, we show that (i) the set of randomly realizable statements is closed under intuitionistic first-order logic, but (ii) different from the set of realizable statements, that (iii) “realizability with probability 1” is the same as realizabilit
40#
發(fā)表于 2025-3-28 11:52:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青铜峡市| 安乡县| 桦川县| 财经| 襄城县| 潢川县| 营口市| 嵩明县| 浦江县| 富锦市| 都匀市| 武胜县| 泽普县| 安徽省| 桓台县| 深圳市| 巴彦淖尔市| 固安县| 陈巴尔虎旗| 陕西省| 光泽县| 新蔡县| 抚远县| 林周县| 榆中县| 宕昌县| 上思县| 石家庄市| 蒲江县| 巴马| 交城县| 荃湾区| 清新县| 称多县| 古田县| 竹北市| 阜阳市| 涟水县| 吉林省| 江永县| 石泉县|