找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Connecting Humans to Equations; A Reinterpretation o Ole Ravn,Ole Skovsmose Book 2019 Springer Nature Switzerland AG 2019 Philosophy of mat

[復(fù)制鏈接]
樓主: Thoracic
41#
發(fā)表于 2025-3-28 17:32:29 | 只看該作者
42#
發(fā)表于 2025-3-28 21:09:07 | 只看該作者
43#
發(fā)表于 2025-3-29 02:46:34 | 只看該作者
Springer Nature Switzerland AG 2019
44#
發(fā)表于 2025-3-29 03:17:01 | 只看該作者
45#
發(fā)表于 2025-3-29 09:42:15 | 只看該作者
46#
發(fā)表于 2025-3-29 14:39:58 | 只看該作者
https://doi.org/10.1007/978-3-7643-8713-6athematics is dealing with. The chapter examines different suggestions. According to Plato, mathematics is about immutable entities that constitute a world of ideas. This world is real—although not palpable to our senses. We cannot sense mathematical objects, but we can grasp them by means of our ra
47#
發(fā)表于 2025-3-29 18:30:52 | 只看該作者
48#
發(fā)表于 2025-3-29 20:42:10 | 只看該作者
49#
發(fā)表于 2025-3-30 03:18:39 | 只看該作者
https://doi.org/10.1007/978-94-009-0467-5mathematics to the secure foundation that has been established in logic. It suggests how mathematical concepts can be defined in terms of logical concepts, and how mathematical theorems can be derived from logical proposition..The chapter considers Frege’s critique of important philosophic conceptio
50#
發(fā)表于 2025-3-30 05:54:59 | 只看該作者
Introduction to tropical geometry,try to demonstrate that mathematics is without contradictions. Meta-mathematics should establish a critical mathematical investigation of mathematics itself. This strategy for a mathematical self-critique was formulated by Hilbert, who did not, as Frege and Russell had suggested, try to establish a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁南县| 鹤峰县| 荆门市| 磴口县| 永定县| 精河县| 新丰县| 新疆| 井研县| 澄迈县| 竹北市| 长阳| 察雅县| 开封市| 广灵县| 保康县| 伊金霍洛旗| 新营市| 蛟河市| 平武县| 禹城市| 玉田县| 札达县| 肇东市| 白玉县| 五家渠市| 郸城县| 科技| 谷城县| 楚雄市| 清涧县| 怀柔区| 常熟市| 东明县| 绵竹市| 罗甸县| 波密县| 蒙山县| 长寿区| 泸定县| 福清市|