找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Connected Health in Smart Cities; Abdulmotaleb El Saddik,M. Shamim Hossain,Burak Kan Book 2020 Springer Nature Switzerland AG 2020 Health

[復(fù)制鏈接]
樓主: CHORD
41#
發(fā)表于 2025-3-28 16:33:52 | 只看該作者
Deep Learning in Smart Health: Methodologies, Applications, Challenges,pter presents an overview of deep learning techniques that are applied to smart healthcare. Deep learning techniques are frequently applied to smart health to enable AI-based recent technological development to healthcare. Furthermore, the chapter also introduces challenges and opportunities in deep learning particularly in the healthcare domain.
42#
發(fā)表于 2025-3-28 19:52:38 | 只看該作者
43#
發(fā)表于 2025-3-29 01:29:31 | 只看該作者
44#
發(fā)表于 2025-3-29 04:44:56 | 只看該作者
45#
發(fā)表于 2025-3-29 08:33:13 | 只看該作者
46#
發(fā)表于 2025-3-29 14:17:46 | 只看該作者
https://doi.org/10.1007/978-3-531-90196-1 studies that fulfilled the predefined criteria were used. Data was extracted from 39 articles for the evaluation of the different health technologies and their uses..mHealth and phones are the most popular type used for health promotion, as it is present in 36% of the articles evaluated. Other succ
47#
發(fā)表于 2025-3-29 16:59:12 | 只看該作者
https://doi.org/10.1007/978-3-531-90196-1its main functionalities and components. Among these, the use of a standardized method for the treatment of a massive amount of patient data is necessary in order to integrate all the collected information resulting from the development of a great number of new m-Health devices and applications. Ele
48#
發(fā)表于 2025-3-29 21:33:42 | 只看該作者
Udo Kuckartz,Anke Rheingans-HeintzeEG classification, this work focuses on developing CNN-based deep learning methods for such purpose. We propose a multiple-CNN feature fusion architecture to extract and fuse features by using subject-specific frequency bands. CNN has been designed with variable filter sizes and split convolutions f
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 01:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江陵县| 嫩江县| 莎车县| 唐河县| 晋中市| 平果县| 昌吉市| 临沧市| 额敏县| 新巴尔虎左旗| 皋兰县| 文成县| 米泉市| 石首市| 平原县| 双城市| 秦安县| 焦作市| 青浦区| 会泽县| 长兴县| 新津县| 古田县| 河北省| 隆昌县| 龙岩市| 龙门县| 江阴市| 罗江县| 禄劝| 鹰潭市| 团风县| 奎屯市| 平谷区| 安远县| 崇仁县| 通海县| 永仁县| 河南省| 中江县| 安丘市|