找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conjugate Gradient Algorithms and Finite Element Methods; Michal K?í?ek,Pekka Neittaanm?ki,Roland Glowinski Book 2004 Springer-Verlag Berl

[復制鏈接]
樓主: Heel-Spur
11#
發(fā)表于 2025-3-23 13:13:53 | 只看該作者
12#
發(fā)表于 2025-3-23 17:31:48 | 只看該作者
13#
發(fā)表于 2025-3-23 18:56:54 | 只看該作者
Inversion of Block-Tridiagonal Matrices and Nonnegativity Preservation in the Numerical Solution of in the componentwise sense. We solve the above problem by suitably chosen numerical method. Since . denotes the concentration, which is always nonnegative, it is natural to require the nonnegativity from the numerical approximations of . as well.
14#
發(fā)表于 2025-3-23 23:28:33 | 只看該作者
15#
發(fā)表于 2025-3-24 02:34:48 | 只看該作者
Geometric Interpretations of Conjugate Gradient and Related Methods.,...{b}.). ∈ ?. is a given right-hand side. This method can be considered as direct as well as iterative. It is similar to the Lanczos method for finding eigenvalues presented in [.] (which is mentioned in [14, p. 410]).
16#
發(fā)表于 2025-3-24 06:55:18 | 只看該作者
The Convergence of Krylov Methods and Ritz Valuesction with the Lanczos method for approximation of eigenvalues of .. A disadvantage is that the actual . for both the conjugate gradients and the Lanczos method do not follow too easily and require clever combination of several ingredients.
17#
發(fā)表于 2025-3-24 11:59:24 | 只看該作者
On the Nonnegativity Conservation in Semidiscrete Parabolic Problemsd comparison principles are fundamental properties of partial differential equations of second order. There are different formulations of these principles. They hold for a variety of linear and nonlinear problems, see e.g., [.], [.], [.], [.], [.], [.], [.], [.].
18#
發(fā)表于 2025-3-24 17:24:58 | 只看該作者
Subcritical Solitons I: Saturable Absorber,nd suggest error indicators/estimators that are further used in various mesh adaptive procedures (see, e.g., [.]). Global error estimates give a general presentation on the quality of an approximate solution and a stopping criteria.
19#
發(fā)表于 2025-3-24 20:51:52 | 只看該作者
20#
發(fā)表于 2025-3-25 02:22:14 | 只看該作者
Michal K?í?ek,Pekka Neittaanm?ki,Roland GlowinskiIncludes supplementary material:
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平舆县| 石河子市| 贵港市| 衡阳市| 通道| 勃利县| 许昌县| 饶河县| 竹北市| 榕江县| 济宁市| 内黄县| 威宁| 宜城市| 色达县| 博野县| 泸溪县| 库尔勒市| 玉山县| 定安县| 周至县| 新竹县| 固原市| 云龙县| 洛南县| 额敏县| 华坪县| 北流市| 凌海市| 辽宁省| 大宁县| 桃园市| 常宁市| 原平市| 曲麻莱县| 汝南县| 册亨县| 明水县| 肇东市| 新野县| 甘孜|