找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Conjectures in Arithmetic Algebraic Geometry; A Survey Wilfred W. J. Hulsbergen Textbook 1994Latest edition Springer Fachmedien Wiesbaden 1

[復(fù)制鏈接]
樓主: Retina
41#
發(fā)表于 2025-3-28 15:03:17 | 只看該作者
42#
發(fā)表于 2025-3-28 18:48:58 | 只看該作者
https://doi.org/10.1007/978-1-349-86191-0tor. This regulator and its generalizations will play a fundamental role in some of the most intriguing conjectures on L-functions of recent times. These conjectures, due to A. Beilinson, will be discussed in later chapters.
43#
發(fā)表于 2025-3-29 01:17:08 | 只看該作者
44#
發(fā)表于 2025-3-29 03:46:06 | 只看該作者
45#
發(fā)表于 2025-3-29 07:26:53 | 只看該作者
Transport in Anion Deficient Fluorite Oxides conjectures about mixed motives. Whereas in the Bloch-Kato conjecture there is still some K-theory, this no longer occurs in the work of Fontaine & Perrin-Riou, except possibly in the ultimate definition of a mixed motive. This remains a serious problem.
46#
發(fā)表于 2025-3-29 12:42:07 | 只看該作者
,The general formalism of ,-functions, Deligne cohomology and Poincaré duality theories,her algebraic K-theory. Such a (co)homology theory has the right properties to admit a formalism of characteristic classes which will generalize the classical regulator. This will be further explained in the next chapter.
47#
發(fā)表于 2025-3-29 17:06:44 | 只看該作者
48#
發(fā)表于 2025-3-29 21:08:46 | 只看該作者
The zero-dimensional case: number fields,tor. This regulator and its generalizations will play a fundamental role in some of the most intriguing conjectures on L-functions of recent times. These conjectures, due to A. Beilinson, will be discussed in later chapters.
49#
發(fā)表于 2025-3-30 03:07:01 | 只看該作者
,Beilinson’s second conjecture,of motivic cohomology is enough to give a ?-structure on Deligne cohomology with volume (up to a non-zero rational number) equal to the first non-zero coefficient of the Taylor series expansion of the L-function at s = m. This seems to be a general phenomenon.
50#
發(fā)表于 2025-3-30 07:34:57 | 只看該作者
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 06:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蒲城县| 平远县| 达州市| 东辽县| 长海县| 昌图县| 潼南县| 施甸县| 子洲县| 遵义县| 玉山县| 新丰县| 临朐县| 陆丰市| 乡宁县| 木里| 丰镇市| 贡山| 沙雅县| 民勤县| 瑞昌市| 大庆市| 保德县| 区。| 恩施市| 厦门市| 鄂尔多斯市| 双峰县| 东辽县| 宁都县| 五寨县| 大方县| 白城市| 仪陇县| 新宾| 陆川县| 景宁| 山东| 延津县| 庆城县| 永嘉县|