找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Conjectures in Arithmetic Algebraic Geometry; A Survey Wilfred W. J. Hulsbergen Textbook 1994Latest edition Springer Fachmedien Wiesbaden 1

[復(fù)制鏈接]
樓主: Retina
11#
發(fā)表于 2025-3-23 11:47:45 | 只看該作者
Mixed realizations, mixed motives and Hodge and Tate conjectures for singular varieties,ensions of their pure analogues and the corresponding categories should be tannakian. Deligne has suggested a somewhat different definition of mixed motives, but in both Jannsen’s and his conception the fundamental notion has become the realization.
12#
發(fā)表于 2025-3-23 17:53:37 | 只看該作者
Topological Approaches to Network Form,In this expository text we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued mathematicians for a long period of time.
13#
發(fā)表于 2025-3-23 21:48:55 | 只看該作者
14#
發(fā)表于 2025-3-24 00:20:09 | 只看該作者
Introduction,In this expository text we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued mathematicians for a long period of time.
15#
發(fā)表于 2025-3-24 04:34:09 | 只看該作者
16#
發(fā)表于 2025-3-24 10:14:26 | 只看該作者
17#
發(fā)表于 2025-3-24 14:11:10 | 只看該作者
18#
發(fā)表于 2025-3-24 17:06:41 | 只看該作者
19#
發(fā)表于 2025-3-24 21:39:09 | 只看該作者
https://doi.org/10.1007/978-3-642-16304-3ensions of their pure analogues and the corresponding categories should be tannakian. Deligne has suggested a somewhat different definition of mixed motives, but in both Jannsen’s and his conception the fundamental notion has become the realization.
20#
發(fā)表于 2025-3-24 23:50:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 06:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桐城市| 汉中市| 九台市| 米脂县| 八宿县| 峨山| 揭东县| 六枝特区| 中卫市| 临沧市| 陈巴尔虎旗| 云梦县| 阳朔县| 乌审旗| 揭西县| 富顺县| 绥棱县| 虎林市| 杭州市| 青浦区| 博湖县| 郸城县| 吴堡县| 灌南县| 个旧市| 微博| 亳州市| 涪陵区| 阿鲁科尔沁旗| 丹寨县| 安徽省| 洮南市| 祁连县| 温州市| 遂宁市| 织金县| 卓尼县| 广宗县| 长泰县| 福鼎市| 康平县|